На трансформаторе нет маркировки

На трансформаторе нет маркировки Маркировка
Содержание
  1. Дополнительное тестирование
  2. Защиты и автоматика
  3. Отделитель, короткозамыкатель, ЭВ, ВВ
  4. Принцип работы трансформатора тока
  5. Цвет проводов в трехфазной сети (380 В)
  6. Правила и ГОСТ маркировки проводов по цвету
  7. Изменения в ГОСТ
  8. Что делать если цветовая маркировка не совпадает?
  9. Вопросы об устройстве трансформатора
  10. Неисправности трансформаторов
  11. Как проверить на целостность
  12. Безопасная проверка работы трансформатора
  13. Условные буквенно-цифровые обозначения типов силовых трансформаторов. Расшифровка силового трансформатора.
  14. Российский рынок силовых трансформаторов 1 — 3 габарита
  15. Как расшифровать данные
  16. Количество фаз
  17. Расщепленная обмотка
  18. Отвод тепла
  19. Число обмоток
  20. Регулировка напряжения под нагрузкой
  21. Исполнение
  22. Назначение
  23. Особые обозначения
  24. Цифры
  25. Как работает трансформатор
  26. Что такое индукция
  27. Увеличение индуктивности сердечником
  28. Взаимоиндукция и принцип передачи тока
  29. Устройство трансформатора
  30. Классический трансформатор
  31. Коэффициент трансформации
  32. От чего зависит мощность трансформатора
  33. Типы классических трансформаторов
  34. Режимы работы трансформаторов
  35. Импульсные трансформаторы
  36. Отличия импульсных трансформаторов от классических
  37. Прочие символы и обозначения
  38. Что делать, если кабель уже проложен без соблюдения цветовой маркировки?
  39. Пример расшифровки трансформаторов
  40. Расшифровка буквенных обозначений трансформаторов и автотрансформаторов
  41. Схематическое обозначение трансформаторов
  42. Силовые трансформаторы, простой расчет
  43. Сухие системы
  44. Трансформаторы напряжения

Дополнительное тестирование

Если имеются сомнения по поводу определения первичной и вторичной обмотки, нужно подключить к ней лампу на 220 В с любым напряжением. На первичной обмотке лампа не загорается или еле тлеет. Другой признак правильного подключения – бесшумная работа трансформатора. Если при работе оборудование сильно вибрирует и шумит, оно подключено неверно.

Дополнительный признак – перегрев обмотки. Шум при работе не является стопроцентно верным показателем, если намотки неплотно прилегают к стержню.

Чтобы удостовериться в правильности выводов, необходимо зафиксировать катушку при помощи кусочка древесины или пластика.

Вибрацию и шум создают так же части сердечника, если они неплотно прилегают друг к другу. Их нужно стянуть скобой или болтом.

На трансформаторе нет маркировки

Защиты и автоматика

Силовой трансформатор – это дорогое и сложное оборудование, поэтому для снижения риска поломки, негативного воздействия короткого замыкания на изделие используются различные виды защит. Этот вопрос также будет рассмотрен подробно в следующих статьях. Высоковольтный трансформатор защищает:

  • Газовая защита. Срабатывает при интенсивном движении газа в баке, при повышении температуры или качании. Обычно газовая защита в таких моделях исполнена для РПН и активной части отдельно. Струйное реле срабатывает сразу на отключение, газовое реле на сигнал, потом на отключение.
  • Дифзащита. Это еще один вид защиты, который используется для отключения оборудования при появлении межвиткового КЗ или перекрытия на шинном мосту. Для этого сводится баланс токов, который берется с ТТ 110 и 10 кВ. Это и является зоной срабатывания, поэтому ТСН также попадает сюда.

Еще одной защитным реле считается резервная защита по типу ПУМА или подобных. Служит в качестве последнего «оплота».

Отделитель, короткозамыкатель, ЭВ, ВВ

На трансформаторе нет маркировки

Для чего нужен трансформатор собственных нужд и ТТ 110 кВ разобрались. Осталось проработать вопрос с коммутационными аппаратами. Об этом оборудовании поговорим детально в других статьях. Здесь рассмотрим принцип действия:

  • Короткозамыкатель – это электрооборудование, которое служит для создания искусственного замыкания. Это кратковременно отключает линию до срабатывания автоматического повторного включения (АПВ). В момент бестоковой паузы отключается отделитель, являющийся коммутационным аппаратом.
  • На современных подстанциях чаще используются элегазовые или вакуумные выключатели 110 киловольт. Это снижает риски отключения из-за несрабатывания АПВ, ускорить процесс, обезопасить работу оперативного персонала.

Часто эксплуатируется старое оборудование, которое ставилось во времена СССР. Но от такой практики постепенно отходят и устанавливают современные коммутационные аппараты.

Принцип работы трансформатора тока

Принцип работы трансформатора тока основан на принципах электромагнитной индукции, которая действует в электрическом/магнитном поле. Более подробная информация представлена на рисунке:

Он преобразовывает начальное значение векторного тока, проходящего в электрической цепи, во вторичную величину (при этом важно учесть фактор пропорционального равенства между модулем и углом передачи тока)

Первичная обмотка устройства, имеющая некое число витков (W1), пропускает через себя ток (I1). Ток, в свою очередь, преодолевает некоторое сопротивление (Z1).

Рядом с данной катушкой происходит процесс образования магнитного потока (Ф1), регулируемый при помощи перпендикулярно-расположенных магнитных проводов (важное замечание — именно такое расположение может обеспечить минимальную потерю во время преобразования электроэнергии)

После пересечения перпендикулярных витков (W2) обмотки, (Ф1) — магнитный поток формирует силу электрического движения (Е2). Эта сила вызывает возникновение тока (I2) на обмотке (вторичной). А вот I2, который подключен к нагрузке выхода (Zн), преодолевает Z2 — сопротивление, и способствует образование меньшего напряжения на концах электроцепи.

Значение K 1 — коэффициент трансформации — определяется выражением: I1 / I2 (отношение первого вектора ко второму). Величина этого отношения вычисляется в начальных построениях проектирования устройства.

Различия между истинными показателями модели и расчетным результатом объясняется важным аспектом метрологии, которым является вид класса точности устройства.

Важно — на практике ток во вторичной обмотке не является постоянным, именно это определяет значение K1. К примеру, его отношение 10000/50 обозначает следующее: во время прохода электротока по области первичной обмотки единица килоампера области вторичной обмотки приравнивается к величине пятидесяти килоампер. Таким образом, коэффициент трансформации оказывает прямое влияние на длительность использования трансформатора тока

Не забудем о магнитном потоке (Ф2), который способствует уменьшению величины I2 в магнитном проводе вторичной обмотки

Таким образом, коэффициент трансформации оказывает прямое влияние на длительность использования трансформатора тока. Не забудем о магнитном потоке (Ф2), который способствует уменьшению величины I2 в магнитном проводе вторичной обмотки.

Во время эксплуатации трансформатора тока нельзя забывать про возникновение нежелательных проблем, одной из которых является пораженческая способность пробоя изоляции (из-за высокого потенциала).

Так как магнитный провод трансформатора тока имеет металлический компонент в строении, у него есть отличные свойства проводимости, которые помогают ему соединить между собой первичную и вторичную обмотки.

Говоря о принципах работы трансформатора тока, скажем и о том, что к его главному предназначению следует отнести решение эксплуатационных задач электротехнических систем, ведь наша промышленность готовит огромный ассортимент выпуска электрических установок, которые не всегда обладают 100-процентным коэффициентом полезности.

А трансформатор способен этот КПД увеличить благодаря усовершенствованию схем и конструкций.

Цвет проводов в трехфазной сети (380 В)

Согласно ПУЭ п. 30 и ГОСТу, действовавшему до 01. 20011 фазные провода обозначались желтым (L1,A), зеленым (L2,B) и красным (L2,C) цветом.

На трансформаторе нет маркировки

Сейчас эти фазы имеют серый, коричневый и черный цвета. При прокладке шинопроводов достаточно окрасить соответствующим цветом места подключений к оборудованию и соединений с кабелями.

Друзья, а теперь я бы хотел приведенную выше информацию аргументировать правилами и ГОСТами, в которых это все указано.

Правила и ГОСТ маркировки проводов по цвету

Согласно ПУЭ п. 30 для упрощения ремонтных и монтажных работ, а так же для предотвращения ошибочного подключения проводов токопроводящие части электросети должны иметь буквенно-цифровую и цветовую маркировку, причём наличие одного вида меток не отменяет необходимость использовать другой.

Там же указывается, что маркировка производится согласно ГОСТ Р 50462-92. В п. 1 этого документа указывается, какие цвета изоляции проводов и окраски шин допускается применять для маркировки. Необходимый цвет отображается на электросхемах буквенным кодом. Соотношение цветов и букв определяется ГОСТом 28763-90

На трансформаторе нет маркировки

Конкретное указание, какого цвета фаза, отмечено в ПУЭ п. 29:

  • нулевой проводник обозначается голубым цветом и буквой «N»;
  • заземляющий проводник обозначается жёлто-зелёными продольными полосами и буквами «РЕ»;
  • провод, совмещающий функции заземления и нейтрали имеет голубой цвет, на концах должны находиться жёлто-зелёные бирки, буквенное обозначение такого проводника «PEN».

На трансформаторе нет маркировки

Все остальные цвета допускаются для обозначения фазных проводников. В трёхжильных кабелях обычно используется коричневый цвет, в пятижильных белый и другие цвета.

Изменения в ГОСТ

В частности, в п. 3 указывается, каким цветом обозначается фаза. Рекомендованными цветами для таких проводников являются серый, коричневый и черный. Этим новые правила отличаются от действовавших много лет стандартных цветов — жёлтого, зелёного и красного (привычная в союзе ЖЗК).

На трансформаторе нет маркировки

На трансформаторе нет маркировки

Информация! Новая цветовая маркировка используется для того, чтобы избежать путаницы — жёлто-зелёную окраску имеет заземляющий проводник.

Согласно ГОСТ Р 50462-2009 п. 1 жёлтый и зелёный проводники по отдельности использовать запрещено, если есть опасность ошибочной индентификации.

Несмотря на введение в действие нового ГОСТа, нет необходимости переделывать существующую электропроводку. Новые правила являются обязательными только при прокладке новых сетей или замене старой проводки.

На трансформаторе нет маркировки

На трансформаторе нет маркировки

При отсутствии возможности использовать проводники с изоляцией необходимого цвета концы проводов необходимо пометить одним из следующих способов:

  • надеть кусочки ПХВ или термоусадочной трубки необходимого цвета;
  • намотать изоляционную ленту;
  • на концы проводов напрессовать наконечники НШВИ.

Что делать если цветовая маркировка не совпадает?

При выполнении ремонтных работ возникает необходимость определить, какого цвета фаза в существующей электропроводке. Для этого необходимо учитывать несколько правил:

  • Жёлто-зелёный проводник ВСЕГДА является заземляющим РЕ
  • Синий (голубой) всегда должен быть нейтралью N (нулем).
  • В однофазной проводке у фазного провода должна быть коричневая оболочка. Вместо коричневого фаза может обозначаться другими приоритетными цветами (серый, белый, красный и т.п.). Она не должна быть синей или жёлто-зелёной.
  • При отсутствии в кабеле проводов желто-зеленого цвета, но есть просто зелёный к заземлению подключается зелёный проводник.

При подключении двухклавишного выключателя задействуются три жилы кабеля и часто можно встретить картину, когда в распределительной коробке на общую клемму выключателя фаза подается через желто-зелёную жилу. Так делать не рекомендуется! «Общая фаза» в таких случаях должна быть коричневой или другого приоритетного цвета (серый, белый, красный и т.

Если вышло так, что все провода одного цвета или цвет обозначения фаза ноль земля отличается от указанных выше, то для маркировки можно использовать цветную изоленту или термоусадочную трубку.

На трансформаторе нет маркировки

Важно! Наличие цветовой маркировки и бирок на концах проводов не отменяет необходимость отключения автоматического выключателя и проверки отсутствия напряжения при ремонте

Соблюдение всех правил цветовой маркировки проводов позволит упростить ремонтные работы и поможет избежать ошибок при монтаже электропроводки.

Вопросы об устройстве трансформатора

-Почему зазор между катушками делается минимальным?
Это делается для лучшего контакта магнитных полей. Если зазор будет большим — то и эффективность трансформатора будет низкая.

-А можно ли сделать трансформатор без сердечника аналогичный мощности с сердечником?
Да, но тогда придется увеличивать количество витков, чтобы увеличить магнитный поток. Например, с сердечником у обмоток витки могут быть по несколько тысяч. А без сердечника придется увеличивать магнитный поток за счет витков. И количество витков будет по несколько десяток тысяч. Это не только увеличивает размеры катушек, но и снижает их эффективность и увеличивает шансы перегрева.

-Можно ли подключить понижающий трансформатор как повышающий?
Если у вас есть трансформатор, который понижает сетевое напряжение с 220 В в 12 В, то его можно подключить как повышающий. То есть, вы можете подать на него переменное напряжение 12 В на вторичную обмотку и получить повышенное на первичной 220 В.

-А что будет, если на вторичную обмотку понижающего трансфоратора подать сетевое напряжение?
Тогда обмотка сгорит. Её сопротивление, количество витков и сечение провода не рассчитаны на такие напряжения. -Можно ли сделать трансформатор самостоятельно своими руками в домашних условия?
Да, это вполне реально. И многие радиолюбители и электронщики этим занимаются. А некоторые еще и зарабатывают. продавая готовую продукцию. Но стоит помнить о том, что это долгий, сложный и не простой труд. Нужны качественные материалы. Это трансформаторное железо, эмалированные медные провода различного сечения, изоляционные материалы. Все материалы должны быть высокого качества. Если медный провод будет с плохой изоляцией, то возможно межвитковое замыкание, которое неминуемо приведет к перегреву. А для начала нужно рассчитать все параметры будущего трансформатора. Это можно сделать с помощью различных программ, которые доступны в сети. Далее, это долгие часы сборки. Особенно если вы решили намотать тороидальные трансформатор.

На трансформаторе нет маркировки

Нужно плотно и равномерно наматывать витки, записывать каждый десяток, чтобы не запутаться и не изменить характеристики будущего преобразователя или блока питания.

-Что будет, если включить трансформатор без сердечника?
Так как трансформатор рассчитывался изначально с сердечником, то и преобразовать полностью напряжение он не сможет. То есть, на вторичке что-то будет, но явно не те параметры. Да и если подключите нагрузку к обмоткам без сердечника, они быстро нагреются и сгорят.

Неисправности трансформаторов

К основным неисправностям трансформаторов можно отнести:

  • Коррозия и наличие ржавчины на сердечнике;
  • Перегрев и нарушение изоляции;
  • Межвитковое короткое замыкание;
  • Деформация корпуса, обмоток и сердечника
  • Попадание воды в обмотку.

Как проверить на целостность

Трансформатор можно проверить обычным мультиметром. Установите прибор в режим измерения сопротивления и проверьте обмотки. Они не должны быть в обрыве, никогда. Если нигде обрывов нет, то можно найти первичную и вторичную обмотки при помощи измерения сопротивления. У первичной обмотки понижающего трансформатора сопротивление будет выше, чем у вторичной. Это все из-за количества витков. Чем больше витков и чем меньше диаметр провода — тем больше сопротивление обмотки.

Так же вы можете найти паспорт на свой трансформатор. В нем указываются сопротивления обмоток, и их параметры, которые нужно будет проверить мультиметром.

Безопасная проверка работы трансформатора

Если вы решили намотать свой трансформатор или проверить старый, то обязательно подключайте лампочку в разрыв цепи (последовательно!). Если что-то не так произойдет то, лампочка загорится и заберет ток на себя и сможет спасти неисправный трансформатор.

Условные буквенно-цифровые обозначения типов силовых трансформаторов. Расшифровка силового трансформатора.

Условные обозначения типов трансформаторов включают буквенное обозначение, характеризующее тип трансформатора, число фаз, вид охлаждения, число обмоток, вид переключения ответвлений, а также обозначение номинальной мощности и класса напряжения.

Буквенное обозначение трансформатора содержит следующие данные в указанном порядке:

число фаз — для трехфазных Т, О — однофазный; 2. вид охлаждения — естественная циркуляция воздуха и масла М, естественное воздушное при открытом исполнении С, естественное воздушное при защищенном исполнении СЗ; 3. принудительная циркуляция воздуха и естественная циркуляция масла Д; 4. число обмоток — трехобмоточный трансформатор Т; выполнение одной обмотки с устройством РПН обозначают буквой Н. Трансформатор с расщепленной обмоткой НИ обозначают буквой Р (например ТРДН). Исполнение трансформатора для собственных нужд электростанций обозначают буквой С (например, ТРДНС); 7. Г — грузоупорное исполнение. Для обозначения автотрансформатора добавляют букву А впереди букв, указанных выше. Исполнение трансформатора с естественным масляным охлаждением с защитой при помощи азотной подушки, без расширителя, обозначают дополнительной буквой З после вида охлаждения (например, ТМЗ).

В цифровом обозначении в виде дроби указывают номинальную мощность в киловольт-амперах (числитель) и класс напряжения обмотки ВИ в киловольтах (знаменатель).

Мощность указывается полная в киловольт-амперах, так как его активная мощность зависит от коэффициента мощности потребителя и поэтому может изменяться.

Например, ТМ-320/10 — трехфазный трансформатор с естественным масляным охлаждением мощностью 320 кВ. А и высшим напряжением 10 кВ, ТДТНг-2000О/I 10 — трехфазный масляный трансформатор, дутьевое охлаждение, трехобмоточный, регулированием напряжения под нагрузкой, грузоупорный, мощностью 20000 кВ А и высшим напряжением 110 кВ. Нормальные условия работы транс форматора.

Высота установки над уровнем моря не более 1000 м, кроме трансформаторов 750—1150 кВ, для которых высота установки над уровне моря не более 500 м; климатическое исполнение У; среднесуточная температура воздуха не более 30 °С и среднегодовая температура воздуха не более 20 С; температура охлаждающей воды не более 25 °С у входа в охладитель.

Категория размещения: для масляных трансформаторов, трансформаторов с жидким диэлектриком и сухих герметичных трансформаторов: 1, 2, 3, 4; для сухих негерметичных трансформаторов: 3, 4. Номинальная частота питающей сети 50 гц. Форма кривой напряжения, подводимого к трансформатору, д. практически синусоидальной, а система фазных напряжений практически симметричной.

Таблица 1. Виды охлаждения трансформаторов и их условные обозначения

Российский рынок силовых трансформаторов 1 — 3 габарита

На сегодняшний день в России и странах СНГ и Таможенного Союза работает 25 завода по производству силовых трансформаторов I – III габарита, которые производят масляные и сухие трансформаторы различных типов, а именно:

Завод Местоположение Всего 25

ХК «Электрозавод»г. Москва
«Тольяттинский трансформатор»г. Тольятти
ГК «Самара-Электрощит ТМ»г. Самара
«Электрощит»г. Чехов, МО
ГК «СВЭЛ»г. Екатеринбург
«Уралэлектротяжмаш-Гидромаш»г. Екатеринбург
«Алттранс»г. Барнаул
«БирЗСТ»г. Биробиджан, ЕАО
«Подольский трансформаторный завод»г. Подольск, МО
«Электрофизика»г. Санкт–Петербург
МЭТЗ им. Козловаг. Минск РБ
«ЗТЗ»г. Запорожье, Украина
«Укрэлектроаппарат»г. Хмельницкий, Украина
«Завод МГТ»г. Запорожье, Украина
АО «КТЗ»г. Кентау РК
«Завод НВА»г. Рассказово
«Люберецкий завод «Монтажавтоматика»г. Люберцы, МО
«Трансформатор Реж»г. Реж
«Энергозапчасть»г. Чебоксары
«ТМС Электро»г. Чехов, МО
«Славэнерго»г. Ярославль
«КПМ»г. Санкт-Петербург;
«Инвертор»г. Оренбург
«Производственная компания «Русский трансформатор»г. Лыткарино, МО
«Группа «Русэлт», АО «Электромаш»г. Тула

Рынок силовых трансформаторов России объединяет совершенно разных по объемам и характеру производства предприятий – потребителей. Поскольку силовые трансформаторы относятся к товарам производственно-технического назначения (ПТН), то сегментирование рынка силовых трансформаторов целесообразно провести по производственно-экономическим признакам. В этом случае отчетливо выделяются следующие шесть групп потребителей:

  • Предприятия генерации (ГЭС, ТЭС, ТЭЦ, ГРЭС, ГАЭС, АЭС). Объекты Федеральной Сетевой Компании (подстанции магистральных электросетей).
  • Региональные распределительные электросетевые компании.
  • Промышленные предприятия разных отраслей (заводы, фабрики, комбинаты, др. предприятия, в т. ч., горнодобывающие, газодобывающие). Сельскохозяйственные предприятия и садоводческие товарищества. Объекты Министерства обороны РФ.
  • Нефтедобывающие компании.
  • Объекты жилищно-коммунального хозяйства, транспортной и социальной инфраструктуры (жилые микрорайоны, школы, торговые центры, больницы, аэропорты, автомагистрали, автовокзалы, речные и морские порты, речные вокзалы, водонасосные станции, станции очистки и т.п.). Муниципальные распределительные электросетевые компании.
  • Объекты железнодорожного транспорта (тяговые подстанции, станции, вокзалы).

Подобное сегментирование соответствует также схеме транспортирования электроэнергии от предприятий генерации к потребителям. Подробный анализ рынка изложен в книгах «Экспертный анализ рынка силовых трансформаторов России. Часть 1: 1-3 габарит» и «Экспертный анализ рынка силовых трансформаторов России. Часть 2; 4-8 габарит»

Как расшифровать данные

Трансформаторы имеют обозначение в виде набора букв и цифр вида ХХХХХХ – 1234 / 1234 – Х1, где вместо литеры «Х» ставится определенная буква, которая по порядку показывает тип, количество фаз, сколько обмоток низшего напряжения, систему охлаждения и специальные обозначения для особых видов трансформаторов.

Не всегда в обозначении трансформатора буду присутствовать все буквы, их присутствие в маркировке зависит только от наличия этих характеристик.

Цифровые обозначения несут в себе основные характеристики трансформаторов: номинальная мощность, класс номинального напряжения обмотки ВН, а последние две цифры – год начала производства.

На трансформаторе нет маркировки

Если в начале условного обозначения будет стоять буква «А», то перед вами автотрансформатор. Если она отсутствует, то силовой трансформатор – повышающий или понижающий.

Количество фаз

Для обозначения числа фаз используются буквы «Т» – трехфазный и «О» – однофазный.

На трансформаторе нет маркировки

Расщепленная обмотка

После этой буквы идет информация о расщепленной обмотке – «Р». Это означает, что на понижающем напряжении находятся две или три обмотки.

Отвод тепла

Система охлаждения обозначается следующими буквами:

  • С – сухой трансформатор, то есть охлаждение воздушное;
  • СЗ – то же самое, но в защищенном исполнении;
  • СГ – герметичный с воздушным охлаждением;
  • СД – воздушное охлаждение с помощью вентилятора;
  • М – охлаждение масляное с естественной циркуляцией;
  • Д – бак с маслом охлаждается с помощью вентилятора (дутье);
  • Ц – принудительная циркуляция масла;
  • ДЦ – комбинация двух способов охлаждения: обдув и циркуляция.

На трансформаторе нет маркировки

Число обмоток

После системы охлаждения может стоять буква «Т», которая обозначает трехобмоточный трансформатор. Интересно, что двухобмоточный условного обозначения не имеет.

Регулировка напряжения под нагрузкой

В случае, когда количество витков на трансформаторе можно изменять без разъединения электрической цепи, то в этом случае это означает, что регулирование напряжения может происходить под нагрузкой и маркируется буквой «Н». При регулировке с выключением – переключение без возбуждения – буква отсутствует.

На трансформаторе нет маркировки

Исполнение

Существуют устройства с особыми конструкционными решениями. Подвесные трансформаторы обозначаются буквой «П», с литой изоляцией – «Л», энергосберегающие прописываются буквой «Э», а усовершенствованные – буквой «У».

Назначение

В зависимости от сферы применения, в конце маркировки может стоять литера, дающая об этом информацию. Для работы на самой электростанции – «С», при использовании на железных дорогах – «Ж», на металлургических предприятиях – «М».

На трансформаторе нет маркировки

Особые обозначения

Существуют отдельные категории трансформаторов, для которых применяются другие обозначения. В частности, это трансформаторы тока и напряжения. Тип сразу указывается в начале буквенного кода: «Т» для первого вида и «Н» для второго. Далее следует информация о способе установки: «П» для проходных, «О» для опорных и «Ш» для шинных. Изоляция также обозначается специальными буквами: «Л» – для литой изоляции, «Ф» – для фарфоровой и «В» – для встроенного изолятора.

Цифры

Цифровая маркировка дает только самые основные характеристики трансформатора. Следующие через тире цифры сразу же после букв – это номинальная мощность в киловольт-амперах (кВА). Затем через наклонную черту указывается мощность обмотки, а для автотрансформаторов еще через один слэш – класс напряжения обмотки. После этого указывается климатическое исполнение, то есть условия местности, в которых может эксплуатироваться данный экземпляр («У» – для умеренных зон, «Х» – для холодных и так далее) и тип его размещения – на открытом воздухе или внутри помещения. В некоторых случаях через тире указывается год выпуска или начала производства устройств данной конструкции.

На трансформаторе нет маркировки

Как работает трансформатор

Трансформатор работает за счет взаимоиндукции. Для начала разберем, что такое индукция.

Что такое индукция

Если по проводу пустить электрический ток, то возникнет магнитное поле. Магнитное поле — неотъемлемая часть электрического. И в магнитном поле сохраняется энергия электрического.

У постоянных магнитов наличие магнитного поля объясняется направлением «доменов в одну сторону». у каждого отдельно взятого атома есть свое маленькое магнитное поле. У постоянных магнитов эти маленькие магнитные поля направлены в одну сторону. Поэтому у постоянного магнита такое сильное магнитное поле.

На трансформаторе нет маркировки

Кстати, среди ремонтников очень популярен магнит, который намагничивает и размагничивает отвертки. Таким отвертками удобно пользоваться, поскольку маленькие болтики и винтики останутся на отвертке и не упадут в случае неосторожного движения. А индуктивность — это способность материала накапливать магнитное поле, когда по этому материалу течет электрический ток.

Чем больше материал может создать магнитное поле, тем выше его индуктивность.

Магнитное поле можно увеличить, если сделать катушку.

Достаточно взять проволоку, намотать ее на каркас. И магнитные поля витков будут складываться. Это и есть катушка индуктивности.

Провод в катушке индуктивности должен быть изолирован. Потому, что если хотя бы один виток будет в коротком замыкании с другим, то магнитное поле будет неравномерным. Будет межвитковое замыкание, из-за которого магнитное поле потеряет свою равномерность.

Если мы подаем на катушку постоянный ток, то и магнитное поле будет постоянным. Оно не будет меняться. А что если отключить катушку от источника? Тогда наступит явление самоиндукции. Так как ток уменьшается, то магнитное поле больше нечем поддерживать. И вся так энергия, которая была в магнитном поле, переходит в электрическую.

Изменение магнитного поля создает электрическое поле.

Увеличение индуктивности сердечником

А как увеличить индуктивность? Только с помощью количества витков и диаметром провода? На индуктивность еще влияет окружающая среда. Воздух — не самый лучший материал для накопления или передачи магнитного поля. У него низкая магнитная проницаемость. Тем более, при изменении плотности и температуры воздуха, это значение меняется. Поэтому, для увеличения индуктивности используют ферромагнетики. К ним относят железо, никель, кобальт и др.

Если сделать сердечник в центре катушки из таких материалов, то можно многократно повысить индуктивность катушки.

Из ферромагнетиков делают сердечники (магнитопроводы). В основном используют электротехническую сталь, которую специально делают для этих целей. Кстати, теперь намного проще регулировать индуктивность с сердечником. Достаточно плавно передвигать сердечник внутри катушки, и индуктивность будет плавно меняться. Это удобнее, чем двигать витки друг от друга.

Взаимоиндукция и принцип передачи тока

Раз можно накопить энергию в катушке за счет магнитного поля, то можно передать эту энергию в другую катушку.

Допустим, есть две одинаковые катушки индуктивности. Одна подключена к питанию, другая нет.

При подключении питания, у первой катушки возникнет магнитное поле. И если приблизить вторую катушку к первой, у второй катушки индуцируется ЭДС за счет магнитного поля первой.

Но ЭДС второй катушки будет не долгим явлением. Если на первую катушку подается постоянное напряжение, то и магнитное поле будет постоянным.

А электрический ток возникает только при переменном магнитное поле. Поэтому, ток во второй катушке сразу исчезнет, как только стабилизируется магнитное поле.

На трансформаторе нет маркировки

Если поменяем полярность на первой катушке, то и изменится ее магнитное поле. А это значит, что оно будет изменяться и во второй катушке. Это снова индуцирует ток во второй катушке, но не надолго. Чтобы непрерывно можно было передать ток от первой катушки ко второй, нужен переменный источник тока. Переменный ток создает переменное магнитное поле. А переменное магнитное поле проницая проводник создает в нем переменный наведенный ток.

И поэтому, если на первую катушку будет подано переменное напряжение, то возникнет и переменное магнитное поле. Это магнитное поле индуцирует во второй катушке электромагнитное поле, и ток будет во второй катушке.

Такое явление называют взаимоиндукцией. Когда за счет индуктивности ток из одной части цепи можно передать в другую используя электромагнитное поле.

Многие путают электромагнитную индукцию и взаимоиндукцию. Но это разные явления, хоть и принцип действия во многом схож.

Кроме переменного тока можно использовать и импульсный ток, в котором плюс и минус не меняются местами. Главное выполнять правило — ток должен менять свое значение. И тогда будет переменное магнитное поле. Кстати, когда работают блоки питания и светильники, издаваемый гул от них — это звук от катушек или их сердечников. Это из-за индукции. Магнитное поле из-за разного направления в катушках частично сдвигает витки и сердечники, отсюда и появляется тот самый звон. Это касается и электродвигателей. Поэтому такие детали заливают смолой или компаундом, чтобы уменьшить издаваемый звук.

Устройство трансформатора

А если катушки будут разными? Тогда можно преобразовать напряжение из одной величины в другую. Так и работает трансформатор. Трансформатор преобразует напряжение с первичной обмотки в напряжение другой величины на вторичной обмотке.

Трансформатор работает только с переменным, импульсным или любым другим током, у которого изменяется значение со временем.

Классический трансформатор

Разберем устройство классического трансформатора. Основная его функция — это снижение или повышение напряжения для блока питания. Работает за счет сетевого напряжения и низкой частоты (от 50 Гц). Частота переменного тока важна для расчетов.

Классический трансформатор состоит из первичной и вторичной обмотки, а также сердечника (магнитопровода). На первичную обмотку подается то напряжение, которое нужно преобразовать. А со вторичной обмотки снимают то напряжение, которое получилось за счет взаимоиндукции. Сердечник увеличивает магнитный поток.

Как же происходит преобразование? Все просто. Можно рассчитать индуктивность первичной и вторичной обмотки. Если нужно низкое напряжение, то вторичная обмотка имеет меньше витков, чем первичная. Раз первичная работает за счет сетевого напряжения, то и рассчитывается на 220 В с небольшим запасом из-за колебаний сети.

Напряжение на вторичной обмотке сдвинуто по фазе относительно первичной. Это связано с явлением взаимоиндукции. На графике показана примерная разница по синусоиде.

На трансформаторе нет маркировки

Трансформаторы могут быть источниками фазовых искажений. Они изменяют сигналы по фазе из-за индуктивности, как показано на графике выше.

На принципиальных схемах классический трансформатор обозначается двумя катушками с сердечником. Соответственно, если у трансформатора несколько вторичных обмоток, то и количество катушек на схеме будет другим.

Количество обмоток на трансформаторе может быть любым. Могут быть и несколько первичных и вторичных обмоток. А еще есть трансформаторы с общей точкой для двуполярного питания.

Кстати, если вы думаете, что у трансформатора нет сторон, как у диодов или транзисторов, то вы ошибаетесь. У трансформатора тоже есть начало обмотки и конец обмотки. На принципиальных схемах обозначение начала обмотки обозначается точкой и цифрами. Зачем это надо? Дело в том, что магнитная индукция имеет свое направление, и на этом заложен весь принцип работы схемы. Если подключить обмотку не так, как показано на схеме, то вся схема перестанет работать как изначально задумывалось. Еще как пример можно привести трёхфазные электродвигатели. У них и вовсе для правильной работы важно знать начало и конец обмотки.

Коэффициент трансформации

У трансформаторов есть такое понятие, как коэффициент трансформации. Это отношение его входных и выходных характеристик (отношение количества витков первичной обмотки к вторичной).

Например, если трансформатор понижающий, с 220 В до 12 В, то его коэффициент больше единицы, то есть К<1. А если понижающий, то наоборот К>1. У разделительного коэффициент равен 1.

От чего зависит мощность трансформатора

При расчете учитываются следующие параметры:

  • Размеры магнитопровода (сердечника);
  • Количество витков;
  • Сечение провода;
  • Количество обмоток;
  • Частота работы.

И все эти значения меняются в зависимости от расчетной мощности и требуемых параметров.

Типы классических трансформаторов

Классические трансформаторы по типу магнитопровода и расположению катушек разделяются на три основных вида:

Броневые чаще всего состоят из Е-пластин (или Ш, как многие называют), которые изолируются друг от друга лаком. В этом типе катушки заключены внутри сердечника как под броней. Поэтому они так и называются.

А еще сердечник может быть ленточным, но расположение катушек от этого не меняется.

Однако в плане эффективности преобразования мощности — это не самый лучший вариант. Магнитный поток получается неравномерным. Да и броневой трансформатор более уязвим к наводкам и помехам извне. Но зато у такого типа есть неоспоримое преимущество. Катушка наматывается достаточно просто, а сборка магнитопровода не составляет особого труда.

Такие трансформаторы чаще всего применяются в мелкогабаритной бытовой технике. Например, их можно часто встретить в мощных звуковых колонках от компьютеров. Стержневые отличаются особенностями расположения катушек и конструкцией магнитопровода. Такой тип трансформаторов еще называют П-образным. Это связано с тем, что конструктивно сердечник такого трансформатора ленточный, и он собирается из узкой ленты электротехнической стали. И чтобы установить катушки в сердечник, его делают из двух форм в виде буквы П.

После установки двух катушек на первую часть сердечника, вторая часть замыкает ее при окончательной сборке.

Этот тип противоположность броневому. У такого трансформатора обмотки находятся снаружи, а у броневого наоборот, внутри.

Тороидальные трансформаторы являются самыми эффективными, и в тоже время самыми сложными в изготовлении. Сложности изготовления заключаются в том, что сердечник имеет форму тора. Он замкнут, и поместить катушки в сердечник так просто как в стержневых и броневых не получится. Можно и разъединить трансформаторное железо на две полукруглые части (как П-образный трансформатор), но обмотку не получится намотать. Она будет не такая плотная и ровная.

Поэтому наматывают витки сразу на сердечник. А это намного дольше, да и автоматизировать такой процесс сложнее. Соответственно, и цена на такой трансформатор будет выше.

Режимы работы трансформаторов

Есть три основных режима:
1. Режим холостого хода. Первичная обмотка подключена к сети, но вторичная обмотка не подключена к нагрузке. Режим нагрузки. Это рабочий режим. Первичная обмотка преобразует сетевое напряжение, а вторичная принимает его и подает в нагрузку. Режим короткого замыкания. Вторичная обмотка находится в коротком замыкании. Это аварийный режим для большинства трансформаторов. В этой ситуации он может быстро нагреться и выйти из строя. Все режимы и их критические параметры также зависят и от типа трансформатора. Например, для трансформатора тока, холостой режим является аварийным.

Импульсные трансформаторы

У импульсных трансформаторов другой тип действия. Они преобразуют напряжение до высоких частот с помощью схемы управления. Конечно из-за этого усложняется схема работы, но это позволяет накапливать большое количество энергии в катушках. Большое преимущество перед классическим трансформаторов — это компактность. Если классический трансформатор на 100 Вт будет большим, то импульсный в десятки раз меньше. Из недостатков импульсных блоков питания — это наличие импульсных помех. Но и эти помехи удается сглаживать. Поэтому, все блоки питания в компьютерах, ноутбуках и зарядных устройствах чаще всего сделаны на импульсных трансформаторах.

Еще импульсные трансформаторы питают лампы подсветки в мониторах, которые подсвечивают матрицу. Это касается TFT мониторов.

Отличия импульсных трансформаторов от классических

Тезисно можно выделить несколько различий:

  • Частота работы;
  • Состав сердечника;
  • Размеры;
  • Схема работы;
  • Стоимость.

А еще, как правило, у импульсных трансформаторов больше обмоток, чем у классических.

Прочие символы и обозначения

В маркировке трансформаторов присутствуют и другие символы, раскрывающие дополнительные технические характеристики того или иного устройства. Например, у трансформаторов с тремя обмотками в обозначении имеется еще одна буква Т, поэтому общая маркировка выглядит как ТМТН, ТДТН или ТДЦТН. Наличие буквы А указывает на автоматический тип устройства, а символ Г означает защиту от грозы, буква О – однофазную конструкцию.

На трансформаторе нет маркировки

Характерными особенностями силовых трансформаторов являются их номинальная мощность, класс напряжения, применяемый в работе, конструктивные особенности, условия и режим функционирования. Для более подробной расшифровки технических характеристик конкретного устройства существуют специальные таблицы.

В настоящее время выпускаются трансформаторы, которые могут работать в различных климатических условиях. Они могут быть установлены не только в специально оборудованных помещениях, но и на открытом воздухе. Поэтому, в соответствии со своим предназначением, все устройства делятся на специальные и общего назначения. Различия в системах охлаждения позволяют классифицировать их как сухие, масляные или с использованием жидкого негорючего диэлектрика.

На трансформаторе нет маркировки

Номинальная мощность и класс напряжения указываются после буквенных символов через дефис. Такая маркировка трансформаторов представляет собой обыкновенную дробь, где в числителе отображается значение номинальной мощности в киловаттах, а в знаменателе – класс напряжения в киловольтах.

Например, обозначение ТМ1000/1074 У1 указывает на три фазы, две обмотки и естественное масляное охлаждение. Значение номинальной мощности составляет 1000 кВА, класс напряжения – 10 кВ. Цифровое обозначение 74 соответствует году изготовления 1974. Агрегат может использоваться в умеренном климате с возможностью установки на открытом воздухе.

Что делать, если кабель уже проложен без соблюдения цветовой маркировки?

Чаще всего можно столкнуться с ситуацией, когда проводка уже проложена, а электрик который этим занимался, как правило не озаботился ознакомиться с правилами цветовой маркировки и ГОСТ. Что делать в этом случае?

Здесь ничего не остается как брать в руки приборы – пробник, индикатор, прозвонку и тратя время, выискивать нужные проводники. После каждого определения того или иного проводника, используйте цветные кембрики для их обозначения согласно ГОСТ и переходите к следующему. Данное обозначение достаточно сделать только в конце и начале кабеля, а не по всей его протяженности.

Фазные проводники от нулевых отличить легко. А как различить нулевой рабочий от защитного, можно ознакомиться в статье “4 способа отличить заземляющий проводник от нулевого”.

Советы, связанные с расцветкой проводов, которых следует придерживаться при монтаже:

  • старайтесь не использовать кабели разных производителей. Как правило, и расцветки у них не одинаковые, что в дальнейшем может привести к ошибкам при монтаже.
  • если вы все же вынуждены работать с кабелями разных производителей и расцветок, в самом начале прозванивайте все жилы и заранее маркируйте их разноцветной изолентой, чтобы не перепутать в дальнейшем. Не надейтесь на свою память
  • когда приходится наращивать короткий кабель, то используйте провода тех же цветов, что и на основном участке.
  • старайтесь не использовать кабели, в которых нет жил с желто-зеленым цветом (защитный ноль)
  • если в кабеле отсутствует жила желто-зеленого цвета, то в качестве земли используйте ближайший родственный цвет.

<noscript><iframe loading=»lazy» src=»https://www. youtube. com/embed/oB1ZfYCnhJg?feature=oembed&amp;wmode=opaque» width=»665″ height=»374″ frameborder=»0″ allowfullscreen=»allowfullscreen»></noscript>

Пример расшифровки трансформаторов

Трансформаторы тока обозначаются следующим образом: • Т — Буква указывает, что это именно трансформатор тока • Вторая буква означает конструктивное исполнение: «П» — проходной, «О» – опорный трансформатор, «Ш» -шинный, «Ф» — с фарфоровой покрышкой • Третье обозначение указывает на изоляцию и систему охлаждения обмоток трансформатора «Л» — литая изоляция, «М» — масляная, Потом идет через “-“ класс изоляции, климатическое исполнение трансформаторов, и, категория установок.

Пример расшифровки трансформатора тока ТПЛ — 10УХЛ4 100/5А.

  • Т – тока
  • П – проходной
  • Л – литая изоляция
  • Класс 10 кВ
  • УХ – умеренного и холодного климата
  • 4 – четвертая категория
  • 100/5А – коэффициент трансформации как сто к пяти.

Примеры расшифровка трансформаторов напряжения: ТМ — 100/35 — трансформатор трёхфазный масляный с естественной циркуляцией воздуха и масла, номинальной мощностью 0,1 МВА, классом напряжения 35 кВ; ТДНС — 10000/35 — трансформатор трёхфазный с дутьем масла, регулируемый под нагрузкой для собственных нужд электростанции, номинальной мощностью 10 МВА, классом напряжения 35 кВ; ВРТДНУ — 180000/35/35 — трансформатор вольтодобавочный, регулировочный, трёхфазный, с масляным охлаждением типа Д, регулируемый под нагрузкой, с усиленным вводом, проходной мощностью 180 МВА, номинальное напряжение обмотки возбуждения 35 кВ, номинальное напряжения регулировочной обмотки 35 кВ; ЛТМН — 160000/10 — трансформатор линейный, трёхфазный, с естественной циркуляцией масла и воздуха, регулируемый под нагрузкой, проходной мощностью 160 МВА, номинальным линейным напряжением 10 кВ. НКФ-110-58У1 — трансформатор напряжения каскадный в фарфоровой покрышке, номинальное напряжение обмотки ВН 110 кВ, 1958 года разработки, климатическое исполнение — У1; НДЕ-500-72У1 — трансформатор напряжения с ёмкостным делителем, номинальное напряжение обмотки ВН 500 кВ, 1972 года разработки, климатическое исполнение — У1; ТНП — 12 — трансформатор тока нулевой последовательности, с подмагничиванием переменным током, охватывающий 12 жил кабеля; ТНПШ — 2 — 15 — трансформатор тока нулевой последовательности, с подмагничиванием переменным током, шинный, охватывающий 2 жилы кабеля, номинальным напряжением обмотки ВН 15 кВ.

Расшифровка буквенных обозначений трансформаторов и автотрансформаторов

При приобретении iNode-PSense необходимо указать следующие параметры:

  • максимальный ток нагрузки сети (по этому параметру будет выбираться номинальный ток
  • количество фаз в контролируемой сети (один трансформатор тока для однофазной сети, три для трехфазной).

Кроме того при заказе iNode-PSense покупатель может сам выбрать один из четырех моделей трансформаторов тока с номинальным током вторичной обмотки 100 мА:

  • XH-SCT-T10 диапазон измерения от 0 до 50 А;
  • XH-SCT-T16 диапазон измерения от 0 до 100 А;
  • XH-SCT-T24 диапазон измерения от 0 до 250 А;
  • XH-SCT-T36 диапазон измерения от 0 до 600 А.

После этого изготовитель осуществляет регулировку iNode-PSense под конкретные трансформаторы тока для минимизации погрешности измерения.

Схематическое обозначение трансформаторов

Изображение трансформаторов на схемах определяется ГОСТами, разработанными еще при СССР. С незначительными изменениями и дополнениями они продолжают действовать и в настоящее время. В этом документе определены все известные виды трансформаторов, автотрансформаторов и их условные графические изображения, которые могут выполняться ручным способом или с помощью специальных компьютерных программ.

На трансформаторе нет маркировки

Условные графические изображения трансформаторов и автотрансформаторов могут быть построены тремя основными способами:

  • Упрощенная однолинейная схема (чертеж 1) отображает трансформаторные обмотки в виде двух окружностей. Их выводы показываются одной линией, на которую черточками наносится количество этих выводов.
  • Для автотрансформаторов предусмотрена развернутая дуга (чертеж 2), отображающая сторону более высокого напряжения.
  • Упрощенные многолинейные обозначения обмоток трансформаторов и автотрансформаторов (чертежи 3 и 4) такие же, как и на однолинейных схемах.

Исключения составляют обозначения выводов обмоток, представленные в виде отдельных линий. Кроме того, существуют развернутые обозначения обмоток, изображаемые в виде полуокружностей, соединенных в цепочку (). В данной схеме не устанавливается число полуокружностей и направление выводов обмотки. Начало обмотки обозначается точкой.

На трансформаторе нет маркировки

В зависимости от конструкции, трансформаторы отображаются на схемах следующим образом: трансформатор без магнитопровода с постоянной связью (рисунок 1) и с переменной связью (рисунок 2). Полярность мгновенных значение напряжения (рисунок 3) представлена на примере трансформатора с двумя обмотками и указателями полярности. Трансформаторы с магнитодиэлектрическими магнитопроводами обозначаются как обычный (рисунок 4) и подстраиваемый (рисунок 5).

Существуют и другие схематические обозначения, отображающие количество фаз, расположение отводов, тип соединения (звезда или треугольник) и другие параметры.

На трансформаторе нет маркировки

  • Чертеж 1 – ступенчатое регулирование трансформатора.
  • Чертеж 2 – однофазный трансформатор с ферромагнитным сердечником. Между обмотками имеется экран.
  • Чертеж 3 – дифференциальный трансформатор. Местом отвода служит средняя точка одной из обмоток.

На трансформаторе нет маркировки

  • Чертеж 4 – однофазный трансформатор с тремя обмотками и ферромагнитным сердечником.
  • Чертеж 5 – трехфазный трансформатор с ферромагнитным сердечником. Соединение обмоток выполнено звездой. В одном из вариантов может быть вывод средней нейтральной точки.
  • Чертеж 6 – трехфазное устройство с ферромагнитным магнитопроводом (сердечником). Соединение обмоток выполнено по схеме звезда-треугольник с выводом средней нейтральной точки.

На трансформаторе нет маркировки

  • Чертеж 7 – трансформатор, рассчитанный на три фазы. Обмотки соединяются комбинированно методом звезды и зигзага с выводом средней точки.
  • Чертеж 8 – тип устройства такой же, как и на предыдущих чертежах. Основное соединение – звезда, при необходимости регулировки под нагрузкой используется треугольник-звезда с выводом нейтральной точки.

На трансформаторе нет маркировки

  • Чертеж 9 – три фазы, три обмотки, соединенные по схеме звезда-звезда.
  • Чертеж 10 – схема вращающегося трансформатора. Таким способом обозначаются обмотки статора и ротора, соединенные между собой. Схема может меняться, в зависимости от конструкции и назначения машины.
  • Чертеж 11 – типовое устройство, в котором одна обмотка соединена звездой, а две другие обмотки – обратными звездами. Из двух обмоток выведены нейтральные точки, соединенные с уравнительным дросселем.

На трансформаторе нет маркировки

  • Чертеж 12 – группа трансформаторов, состоящая из трех однофазных устройств с двумя обмотками, соединенными по схеме звезда-треугольник.
  • Чертеж 13 – схема однофазного автотрансформатора с ферромагнитным сердечником.
  • Чертеж 14 – однофазный автотрансформатор с функцией регулировки напряжения.

На трансформаторе нет маркировки

  • Чертеж 15 – трехфазный автотрансформатор с ферромагнитным сердечником и обмотками, соединенные звездой.
  • Чертеж 16 – автотрансформатор на девять выводов.
  • Чертеж 17 – однофазный автотрансформатор с третичной обмоткой.

На трансформаторе нет маркировки

Существуют и другие конструкции трансформаторных устройств, которые отображаются на электрических схемах:

  • С одной вторичной обмоткой (рисунок 18).
  • Две вторичные обмотки и один магнитопровод (рисунок 19).
  • Два магнитопровода и две вторичные обмотки. Если магнитопроводов более двух, их можно не изображать (рисунок 20).
  • Шинный трансформатор тока с нулевой последовательностью и катушкой подмагничивания (рисунок 21).

Кроме приведенных примеров, обозначение трансформатора на схеме существует и в других вариантах. Более подробно с ними можно ознакомиться в специальных справочниках по электротехнике.

Силовые трансформаторы, простой расчет

В статье на конкретном примере приводится простой метод расчета силового трансформатора для блока питания или зарядного устройства.

Например, нужно рассчитать силовой трансформатор для зарядного устройства, которым будем заряжать автомобильные аккумуляторы емкостью до 60 А/час.

Как известно, ток заряда равен 0,1 от емкости аккумулятора, в нашем случае это 6 Ампер.

Напряжение для заряда аккумулятора должно быть не менее 15 В, плюс падение напряжения на диодах и токоограничивающем резисторе, примем его около 5 В.

Итого, напряжение вторичной обмотки должно быть около 20 В, при токе до 6 А. Мощность при этом, будет равна Р = 6 А х 20 В = 120 Вт.

силового трансформатора при мощности до 60 Вт составляет 0,75. При мощности до 150 Вт 0,8 и при больших мощностях 0,85.

При мощности вторичной обмотки 120 Вт, с учетом к. мощность первичной обмотки равна:

120 Вт : 0,8 = 150 Вт.

S (см 2 ) = (1,0 ÷1,2) √Р

Коэффициент перед корнем квадратным из мощности зависит от качества электротехнической стали сердечника.

Принимаем его равным среднему значению 1,1 и получаем площадь сердечника равной 13,5 см 2.

Коэффициент от 50 до 70 зависит от качества стали. Возьмем среднее значение 60. Получаем количество витков на вольт равным:

Округлим это значение до 4,5 витка на вольт.

Первичная обмотка будет работать от 220 В. Ее количество витков равно 220 х 4,5 = 990 витков.

Вторичная обмотка должна выдавать 20 В. Ее количество витков равно 20 х 4,5 = 90 витков.

Для этого нужно знать ток каждой обмотки. Для вторичной обмотки ток нам известен, его величина 6 А.

Ток первичной обмотки определим, как мощность, деленную на напряжение. (Сдвиг фаз для упрощения расчета учитывать не будем).

I1 = 150 Вт / 220 В = 0,7 А

Диаметр провода определяем по формуле:

Коэффициент перед корнем квадратным влияет на плотность тока в проводе. Чем больше его значение, тем меньше будет греться провод при работе. Примем среднее значение.

Для меди плотность тока до 3,2 А/мм кв, для алюминиевых проводов до 2А/мм кв.

Диаметр провода первичной обмотки:

D1 = 0,75 √0,7 = 0,63 мм

Диаметр провода вторичной обмотки:

D2 = 0,75 √6 = 1,84 мм

Для намотки выбираем ближайший больший диаметр. Если нет толстого провода для вторичной обмотки, можно намотать ее в два провода. При этом суммарная площадь сечения проводов должна быть не меньше площади сечения для рассчитанного диаметра провода. Как известно, площадь сечения равна πr² , где π это 3,14, а r — радиус провода.

Вот и весь расчет.

Если вторичных обмоток несколько, сумма их мощностей не должна превышать величину, равную мощности первичной обмотки, умноженной на к. Количество витков на вольт одинаково для всех обмоток конкретного трансформатора. Если известно количество витков на вольт, можно намотать обмотку на любое напряжение, главное, чтобы она влезла в окно магнитопровода. Диаметр провода каждой обмотки определяется исходя из величины тока этой обмотки.

Овладев этой простой методикой, вы сможете не только изготовить нужный вам силовой трансформатор, но и подобрать уже готовый.

Сухие системы

Одной из новых разновидностей являются системы сухого охлаждения. Они просты в эксплуатации и обслуживании, не требовательны и не капризны. Если исполнение установки открытое, а циркуляция воздуха происходит естественным способом, его маркируют как С.

Защищённое исполнение обозначается буквами СЗ. Корпус может быть закрыт от воздействия различных факторов окружающей среды, он называется герметичным. При естественной циркуляции воздуха в нём, маркировка имеет буквы СГ.

На трансформаторе нет маркировки

В воздушных охладительных системах может присутствовать принудительная циркуляция. В этом случае устройство обозначается буквами СД.

Трансформаторы напряжения

Это, пожалуй, наиболее многочисленная разновидность семейства трансформаторов. В двух словах, их основная функция – сделать произведенную на электростанциях энергию доступной для потребления различными устройствами. Для этого существует система передачи электроэнергии, состоящая из повышающих и понижающих трансформаторных подстанций и линий электропередач.

На трансформаторе нет маркировки

Вначале электроэнергия, произведенная электростанцией, подается на повышающую трансформаторную подстанцию (к примеру, с 12 до 500 кВ). Это необходимо для того, чтобы компенсировать неизбежные потери электроэнергии при передаче на большие расстояния.

Следующий этап – понижающая подстанция, откуда электроэнергия уже по низковольтной линии подается на понижающий трансформатор и далее к потребителю в виде напряжения 220 в.

Но на этом работа трансформаторов не заканчивается. В большинстве окружающих нас бытовых электроприборов — в ПК, телевизорах, принтерах, стиральных машинах-автоматах, холодильниках, микроволновых печах, DVD и даже в энергосберегающих лампочках установлены понижающие трансформаторы. Пример индивидуального «карманного» трансформатора – зарядное устройство мобильного телефона (смартфона).

На трансформаторе нет маркировки

Гигантскому разнообразию современных электронных устройств и выполняемых ими функций соответствует множество различных типов трансформаторов. Это далеко не полный их список: силовые, импульсные, сварочные, разделительные, согласующие, вращающиеся, трехфазные, пик-трансформаторы, трансформаторы тока, тороидальные, стержневые и броневые.

На трансформаторе нет маркировки

Оцените статью
Маркировка-Про