Нет маркировки на гильзах мосина

Нет маркировки на гильзах мосина Маркировка

ПОНЯТИЕ ОБ УПРУГОМ СОПРОТИВЛЕНИИ СТВОЛА

Разделим ствол на ряд участков и совместим его под графиком изменения давления внутри ствола при выстреле (схема 144). Над кривой давления расположим математически рассчитанную согласно сопротивлению материалов кривую упругого сопротивления ствола давлению внутри него. Мы получим картину сопротивления стенок ствола в различные периоды выстрела.

Схема 144. Кривая упругого сопротивления ствола винтовки образца 1891-1930 гг и кривая давления газов в стволе

Как видно из схемы 144, давление пороховых газов в канале ствола в сечениях аа и бб выше предельно допустимого. Снижение запаса прочности в этих сечениях сделано с целью получить конструктивно удобные размеры ствола, иначе пришлось бы значительно увеличить размеры ствола в указанных сечениях. Запомните: винтовочные стволы при использовании недоброкачественных старых боеприпасов неизвестного происхождения с детонирующим порохом чаще всего разрываются сразу же за патронником. По этой причине при отладке оружия нельзя производить сверление и крепежные работы (например, при постановке оптического прицела) вблизи патронника и узлов запирания.

Инженерно-расчетным путем (табл. 43) было установлено, что при давлении в канале ствола, равном 3/4 предельной упругости металла, даже сколь угодно большая толщина стенок не обеспечит ствол от появления остаточных деформаций на его внутренней поверхности. Опытным путем установлено, что увеличивать толщину стенок ствола, изготовленного из оружейной углеродистой стали, до величины, превышающей 1 1/2 калибра, нецелесообразно, так как дальнейшее увеличение толщины стенок лишь незначительно увеличивает прочность ствола и в то же время повышает его вес.

Таблица 43Зависимость предела упругого сопротивления ствола от толщины стенок ствола

Толщина стенок ствола в диаметрах канала0,10,250,500,751,01,251,501,70200
r2/r11,21,522,53,03,54,04,55,000
Р/se0,170,340,500,580,630,660,680,690,700,75

Средством увеличения прочности ствола без его утяжеления является скрепление стенок ствола, сущность которого состоит в том, что ствол изготавливается многослойным, из нескольких труб, надеваемых одна на другую «с натягом». При этом происходит увеличение прочности (упругого сопротивления) ствола (трубы) за счет перераспределения напряжения внутри его стенок вследствие нагружения их таким внутренним давлением, при котором внутренние слои получают пластическую деформацию, а наружные практически не деформируются Такое автоскрепление ствола называется автофретажем. В настоящее время автофретаж применяется для изготовления стволов артиллерийских систем и специального диверсионного оружия. Во время Второй мировой войны автофретажные стволы довольно часто применялись в крупнокалиберных пулеметах и противотанковых ружьях. Автофретажный ствол имеет несколько меньший разброс пуль, чем ствол моноблок, позволяет стрелять боеприпасами повышенной мощности, имеет повышенную живучесть Иногда такая конструкция применялась и в снайперских винтовках.

До сих пор применяется так называемое лейнирование стволов. Лейнер — тонкий внутренний слой (трубка) двухслойного (лейнированного) ствола, вставленный внутри наружной несущей обложки и сменяемый при износе внутренней поверхности канала ствола. Очень часто лейнеры изготавливались из бронзы. Бронзовый лейнер на 20-25% уменьшает трение прохождения по нему снаряда (пули) и значительно повышает начальную скорость метательного поражающего элемента без увеличения порохового заряда. При этом лейнированные стволы менее подвержены перегреву. Во время Второй мировой войны лейнированные стволы применялись немцами в противотанковых и зенитных орудиях В настоящее время лейнеры-вставки используются в пневматическом оружии для повышения начальной скорости пули. Кучность боя лейнированного ствола оставляет желать лучшего.

ПУЛИ СПЕЦИАЛЬНОГО ДЕЙСТВИЯ

При ведении боевых действий невозможно обойтись без пуль специального действия — бронебойных, зажигательных, трассирующих и т.д.

Патроны с бронебойными пулями предназначены для поражения противника за бронированными укрытиями. От обыкновенных пуль бронебойные отличаются наличием броневого сердечника высокой прочности и твердости. Между оболочкой и сердечником обычно находится мягкая свинцовая рубашка, облегчающая врезание пули в нарезы и предохраняющая канал ствола от интенсивного износа. Иногда бронебойные пули не имеют специальной рубашки. Тогда оболочка, являясь корпусом пули, изготавливается из мягкого материала. Так устроена французская бронебойная пуля (3 на схеме 121), состоящая из томпакового корпуса и стального бронебойного сердечника. Носик бронебойной пули окрашен в черный цвет.

Схема 121. Бронебойные пули:1- отечественная; 2 — испанская; 3 — французская

Бронепробиваемое действие пуль обычно выгодно сочетать с другими видами действия: зажигательным и трассирующим. Поэтому бронебойный сердечник встречается в бронебойно-зажигательных и бронебойно-зажигателыю-трассирующих пулях.

Трассирующие пули предназначены для целеуказания, корректирования огня при стрельбе до 1000 м. Такие пули наполнены трассирующим составом, который для равномерного горения запрессовывается в несколько приемов под очень высоким давлением во избежание разрушения состава при выстреле, горения его на большой поверхности и разрушения пули в полете (а на схеме 122). В оболочке трассирующих пуль отечественного производства спереди помещен сердечник из сплава свинца с сурьмой, а сзади — стаканчик с запрессованным в несколько слоев трассирующим составом

Нет маркировки на гильзах мосина
Схема 122. Трассирующие пули:
а — пуля Т-30 (СССР); б — пуля SPGA {Англия); в — пуля Т (Франция)

Во избежание разрушения спрессованного трассирующего состава в пуле и нарушения его нормального горения на трассирующих пулях обычно не делается накатка (канавка) на боковой поверхности для обжима в нее дульца гильзы. Крепление трассирующих пуль в дульце гильзы обеспечивается, как правило, за счет посадки их в дульце с натягом.

При выстреле пламя от порохового заряда зажигает трассирующий состав пули, который, сгорая в полете пули, дает яркий светящийся след, хорошо видный и днем и ночью. В зависимости от времени изготовления и применения в изготовлении трассирующего состава различных компонентов свечение трассера может быть зеленым, желтым, оранжевым и малиновым.

Наиболее практичным является малиновое свечение, хорошо заметное и ночью и днем.

Особенностью трассирующих пуль является изменение веса и перемещение центра тяжести пули по мере выгорания трассера. Изменение веса и продольное смещение центра тяжести не оказывают вредного влияния на характер полета пули. Но поперечное смещение центра тяжести, вызванное односторонним выгоранием трассирующего состава, делает пулю динамически неуравновешенной и вызывает значительное увеличение рассеивания. Кроме того, при горении трассера выделяются химически агрессивные продукты горения, которые разрушающе действуют на канал ствола. При стрельбе из пулемета это не имеет значения. Но снайперский отборный и точный ствол надо беречь. Поэтому не злоупотребляйте трассирующей стрельбой из снайперской винтовки. Тем более что точность стрельбы трассирующими пулями из самого хорошего ствола оставляет желать лучшего. Более того, трассирующая пуля с потерей веса от сгорания трассера быстро теряет пробивную способность и на дистанции 200 м уже не пробивает даже каску. Носик трассирующей пули окрашен в зеленый цвет.

Зажигательные пули выпускались до Второй мировой войны и в ее начальный период. Пули эти предназначались для поражения легковоспламеняющихся целей. В их конструкциях зажигательный состав помещался чаще всего в головной части пули и срабатывал (воспламенялся) при попадании пули в цель (схема 123). Некоторые зажигательные пули, например французская (а на схеме 123), загорались еще в канале ствола от пороховых газов. Автору доводилось видеть стрельбу такими пулями при экспертно-криминалистическом отстреле. Зрелище было очень впечатляющим от стрелка через полигон уходили красивые желто-оранжевые шары величиной с футбольный мяч. Но боевого эффекта от этого фейерверка не было абсолютно никакого. Зажигательные пули, появившиеся в конце Первой мировой войны для борьбы с фанерно-полотняными аэропланами противника, оказались несостоятельными против цельнометаллической авиации. Французские, польские, японские, испанские зажигательные пули не имели необходимой пробивной способности и были не в состоянии пробить и поджечь даже железнодорожную цистерну. Положение не спасало даже то, что впоследствии зажигательный состав стали помещать внутри прочного стального корпуса. Носик зажигательной пули окрашен в красный цвет.

Схема 123. Зажигательные пули:а — французская пуля Ph: 1 — оболочка, 2 — фосфор, 3, 4 и 5 — донная часть, 6 — легкоплавкая пробка; б — испанская пуля Р 1 — сердечник, 2 — очко, 3 — тяжелое тело, 4 — зажигательный состав (фосфор); в — германская пуля SPr 1 — оболочка, 2 — зажигательный состав (фосфор), 3 — донная часть; 4 — легкоплавкая пробка; г — английская пуля SA: 1 — оболочка, 2 — зажигательный состав, 3 — донная часть; 4 — легкоплавкая пробка

По причине малой пробиваемости зажигательные пули довольно быстро стали вытесняться из боевого применения бронебойно-зажигательными пулями, которые обычно имели карбидо-вольфрамовый или стальной бронебойный сердечник. Сочетание зажигательного и бронебойного действия получилось очень выгодным. Конструкции бронебойно-зажигательных пуль во время Второй мировой войны в разных странах были различными (схема 124). Обычно зажигательный состав по-прежнему располагался в головной части пули — так он надежнее срабатывал, но хуже поджигал. Не вся зажигающая субстанция проникала вслед за бронебойным сердечником в образованную им пробоину. Во избежание этого недостатка выгоднее размещать зажигательный состав позади бронебойного сердечника, но в этом случае снижается чувствительность воспламенения пули к действию по слабым преградам. Оригинально решили эту задачу немцы, они расположили зажигательный состав вокруг бронебойного сердечника (4 на схеме 124, схема 125).

Схема 124 Бронебойно-зажигательные пули:1- отечественная, 2 — итальянская; 3 — английская; 4 — германская

Схема 125. Бронебойно-зажигательная пуля РтК калибра 7,92 (германская)

Головная часть бронебойно-зажигательных пуль окрашена в черный цвет с красным пояском.

Бронебойно-зажигательно-трассирующие пули обладают одновременно бронебойным, зажигательным и трассирующим действием. Они состоят из тех же элементов: оболочки, бронебойного сердечника, трассера и зажигательного состава (схема 126). Наличие трассера у этих пуль существенно повышает их зажигательное действие. Носик бронебойно-зажигательно-трассирующей пули окрашивается в фиолетовый и красный цвета.

Схема 126. Бронебойно-зажигательно-трассирующие пули:1 — отечественная БЗТ-30;2 — итальянская

До Второй мировой войны в армиях некоторых стран (в частности, СССР и Германии) применялись так называемые пристрелочно-зажигательные пули. По идее они должны были давать яркую вспышку в момент встречи даже с фанерным щитом обычной мишени. Пули эти и в СССР, и в Германии имели одинаковую конструкцию. Принцип их действия обычно был основан на том, что ударник, находящийся на оси пули и предназначенный для накола капсюля, в походном состоянии удерживался на месте взаимно сомкнутыми грузиками-противовесами. Эти противовесы при выстреле и вращении пули центробежной силой расходились в стороны, освобождали или взводили ударник. При встрече с целью и торможении пули ударник накалывал капсюль, который воспламенял зажигательный состав, давая очень яркую вспышку. Когда-то в ДОСААФ, куда отдавали для учебных целей всякий патронный «сброд», ненужный в армии, автор стрелял такими патронами выпуска 1919 (!) г. Патроны были с латунной гильзой и латунной оболочкой пули, порох от старости детонировал и оружие сильно било в плечо. На дистанции 300 м вспышки от попадания этих пуль были заметны в яркий солнечный день невооруженным глазом. Эти пули, по существу, являлись разрывными, ибо они по-настоящему разрывались на осколки при попадании в фанерный щит. При этом образовывалась дыра, в которую можно было просунуть кулак. По рассказам очевидцев, попадания такими пулями по живой цели имели ужасные последствия. Этот боеприпас был запрещен Женевской конвенцией и во время Второй мировой войны не производился, разумеется, не в целях гуманизма, а по причине дороговизны в производстве. Старые запасы патронов с такими пулями пошли в ход. Для снайперской стрельбы такие пули непригодны по причине большого (очень большого) рассеивания. Носик пристрелочно-зажигательной пули, так же, как и у обычной зажигательной, окрашивается в красный цвет. Это и были те самые знаменитые разрывные пули, которые не афишировались ни у нас, ни в Германии. Их устройство представлено на схемах 127, 128.

Схема 127. Разрывные пули:а — пуля дистанционная (Германия); б — пуля ударная (Германия); в — пуля ударная (Испания)

Схема 128. Разрывные пули инерционного действия:1 — оболочка; 2 — взрывчатое вещество;3 — капсюль; 4 — предохранитель; 5 — ударник

Вышеописанные разновидности специальных пуль применяются во всех патронах стрелкового оружия, не исключая даже пистолетных патронов, если те используются для стрельбы из пистолет-пулеметов.

Отечественным пулям присваиваются следующие обозначения: П — пистолетная; Л — обыкновенная легкая винтовочная; ПС — обыкновенная со стальным сердечником; Т-30, Т-44, Т-45, Т-46 — трассирующие; Б-32, БЗ — бронебойно-зажигательные; БЗТ — бронебойно-зажигательно-трассирующая; ПЗ — пристрелочно-зажигательная; 3 — зажигательная.

По этим маркировкам можно определить вид боеприпасов в ящике с патронами.

В настоящее время в боевом применении остались наиболее практично себя зарекомендовавшие легкие обыкновенные пули, трассирующие и бронебойно-зажигательные.

На складах НЗ до сих пор остались довольно большие запасы патронов со всеми вышеописанными видами пуль, и время от времени эти патроны поступают как для учебных стрельб, так и для боевого применения. В зацинкованном виде боевые винтовочные патроны могут храниться 70-80 лет, не теряя боевых качеств.

Малокалиберные валовые спортивно-охотничьи патроны, выпускавшиеся в СССР, могли храниться 4-5 лет без изменения боевых качеств. По истечении этого срока у них начинала изменяться кучность боя по высоте из-за неравномерности сгорания пороха в разных патронах. После 7-8 лет хранения у таких патронов в связи с разложением капсюльного состава резко возрастало количество осечек. После 10-12 лет хранения многие партии этих патронов становились непригодны для использования.

Целевые малокалиберные патроны, изготовленные очень качественно и скрупулезно, хранившиеся в герметичных упаковках и зацинкованные, не теряли своих качеств при сроках хранения 20 лет и более. Но долго хранить малокалиберные патроны не следует, потому что на длительные сроки хранения они не рассчитаны.

Патроны к огнестрельному нарезному оружию во всех государствах мира стараются делать как можно более качественно. Классическую механику не обманешь. Например, незначительное изменение веса пули от расчетного не оказывает существенного влияния на меткость стрельбы при малых дистанциях, но с увеличением дальности дает знать о себе довольно сильно. При изменении веса обыкновенной винтовочной легкой пули на 1% (Vнач — 865 м/с) отклонение траектории по высоте на дальности 500 м составит 0,012 м, на 1200 м — 0,262 м, на 1500 м — 0,75 м.

В снайперской практике от качества пули зависит очень многое.

На высоту траектории пули влияют не только ее вес, но и начальная скорость пули, и геометрия ее обтекаемости. На начальную скорость пули в свою очередь влияют величина порохового заряда и материал оболочки: разный материал обеспечивает разное трение пули о стенки ствола.

Крайне важное значение имеет балансировка пули. Если центр тяжести не совпадает с геометрической осью, то разброс пуль повышается, следовательно, снижается меткость стрельбы. Это сплошь и рядом наблюдается при стрельбе пулями с различной механической неоднородной начинкой.

Чем меньше отклонения в форме, весе и геометрических размерах при изготовлении пули данной конструкции, тем лучше меткость стрельбы при прочих равных условиях.

Кроме того, необходимо иметь в виду, что ржавчина на оболочке пули, забоины, царапины и прочего рода деформации очень неблагоприятно отражаются на полете пули в воздухе и приводят к ухудшению кучности стрельбы.

На максимальное давление пороховых газов, выбрасывающих пулю, имеет влияние начальное форс-давление, врезающее пулю в нарезы, которое в свою очередь зависит от того, насколько плотно пуля запрессована в гильзу и фиксирована в ней обжимом дульца за кольцевую накатку. При разных материалах гильзы это усилие будет разным. Пуля, косо посаженная в гильзу, и по нарезам пойдет «косым» образом, в полете будет неустойчива и обязательно отклонится от заданного направления. Поэтому патроны старых выпусков необходимо тщательно осматривать, отбирать и отбраковывать при обнаружении погрешностей.

Лучшую кучность стрельбы дают обыкновенные пули, у которых оболочка залита свинцом без другой начинки. При стрельбе по живой цели специальные пули не нужны.

Как вы уже убедились, винтовочные боеприпасы, одинаковые с виду и предназначенные для одного и того же оружия, неодинаковы. На протяжении нескольких десятков лет они изготавливались на разных заводах, из различных материалов, в различных условиях, при непрерывно меняющихся требованиях обстановки, с пулями разной конструкции, разного веса, разной заливки свинцом, разного диаметра (см. табл. 38) и разного качества изготовления.

Одни и те же с виду патроны имеют разную траекторию пули и различную кучность боя. При стрельбе из пулемета это не имеет значения — плюс-минус 20 см выше-ниже. Но для снайперской стрельбы это не годится. «Сброд» различных патронов, пусть даже самых хороших, не дает точной, кучной и однообразной стрельбы.

Поэтому снайпер отбирает именно для своего ствола (ствол стволу тоже рознь, см. далее) однообразные патроны, одной серии, одного завода, одного года выпуска и, еще лучше, из одного ящика. Разные партии патронов разнятся друг от друга по высоте траектории. Поэтому под разные партии патронов снайперское оружие нужно пристреливать заново.

Карибские производители

Куба

Ранние кубинские боеприпасы не использовали код штампа до конца 1970 -х годов.

  • 13(1980-е — 2012 гг.) — Ла Кампана, Ойо-де-Маникарагуа , провинция Вилья-Клара , Куба. тированы начало 1980-х.
  • PMV Pirotecnia Militar de Las Villas (1970-е — 1980-е) — Ла Кампана, Ойо-де-Маникарагуа , Провинция Лас-Вильяс , Куба. Штампы датируются концом 1970-х годов. В 1976 г. провинция Лас-Вильяс была разделена на 3 более мелкие провинции: Сьенфуэгос, Санкти-Спиритус и Вилья-Клара.
  • EMI Empresa Militar Industrial «Эрнесто Че Гевара» («Военно-промышленное предприятие« Эрнесто Че Гевара »») (2012 г. -Присутствует) — Ла Кампана, Маникарагуа , Провинция Вилья-Клара , Куба . Новую технику предоставит KBAL, подразделение Климовского патронного завода , Рособоронэкспорт .

Доминиканская Республика

  • RD República Dominicana (Armeria FA Сан-Кристобаль, «Армейская оружейная» в Сан-Кристобале ») (1955? -1968) — Сан-Кристобаль, Доминиканская Республика. На штампе есть буква «R» в положении «9 часов», «D» в положении «3 часа», обозначение картриджа (например, .30 M1 ) в положении «12 часов» и двухзначное обозначение года выпуска на отметке. 6:00. После убийства Трухильо в 1961 году оружейный склад постепенно свернул производство, а был закрыт.

ЛЕГКИЕ И ТЯЖЕЛЫЕ ПУЛИ. ПОПЕРЕЧНАЯ НАГРУЗКА ПУЛИ

Поперечной нагрузкой пули называется отношение веса пули к площади поперечного сечения ее цилиндрической части.

an = q/Sn (г/см2),

где q — вес пули в граммах;

Sn — площадь поперечного сечения пули в см2.

Чем больше вес пули при том же калибре, тем больше и ее поперечная нагрузка. В зависимости от величины поперечной нагрузки различают легкие и тяжелые пули. Обыкновенные пули, имеющие при нормальном калибре (см. далее) поперечную нагрузку более 25 г/см2 и вес более 10 г, называются тяжелыми, а пули нормального калибра, имеющие вес менее 10 г и поперечную нагрузку менее 22 г/см2, называются легкими (табл. 39).

Таблица 39Основные данные легкой пули образца 1908 г. и тяжелой пули образца 1930 г.

ХарактеристикаЛегкая пуля обр. 1908 г.Тяжелая пуля обр. 1930 г.
Вес пули, г9,611,8
Длина пули, мм28,533,2
Высота оживала, мм18,418,83
Длина ведущей части, калибров1,31,0
Поперечная нагрузка, г/см221,225,9

Пули с большой поперечной нагрузкой имеют меньшую начальную скорость, чем легкие пули, при одном и том же максимальном давлении в стволе. Поэтому на малых дальностях стрельбы легкая пуля дает более настильную траекторию, чем тяжелая пуля (схема 118). Однако с увеличением поперечной нагрузки уменьшается ускорение силы сопротивления воздуха. А так как ускорение силы сопротивления воздуха действует в направлении, обратном скорости пули, то пули с большей поперечной нагрузкой медленно теряют скорость под влиянием сопротивления воздуха. Так, например, отечественная тяжелая пуля на дальности более 400 м имеет более настильную траекторию, чем легкая пуля (см. схему 118).

Схема 118. Траектории легкой и тяжелой пуль при стрельбе на различные дальности

Немалое значение имеет и то, что тяжелая пуля имеет конический хвостовик и ее аэродинамика на низких скоростях более совершенна, чем аэродинамика пули легкой (см. ранее).

По всем этим причинам при достижении дистанции 500 м легкая пуля образца 1908 г. начинает притормаживаться, а тяжелая — нет (табл. 40).

Таблица 40Время полета пули, с

Дистанции стрельбы, мобр. 1930 г.обр. 1908 г.
1000,130,11
2000,270,25
3000,420,40
4000,580,57
5000,760,76
6000,950,97
7001,161,21
8001,391,47
9001,641,75
10001,912,06
11002,202,40
12002,512,77
13002,843,16
14003,193,58
15003,554,02

Практикой установлено, что тяжелые пули на дистанциях 400 м обеспечивают более кучный бой и сильнее действуют по цели, чем легкие пули. Из винтовок и пулеметов максимальная дальность полета тяжелой пули составляет 5000 м, а легкой — 3800.

Для обычных пехотных винтовок, из которых стрельба мало подготовленными стрелками, как правило, ведется на дистанциях до 400 м, стрельба легкими пулями будет практичной, ибо на этой дистанции траектория легкой пули будет более настильной, а следовательно, более результативной. Но для снайперов и пулеметчиков, которым надо достать цель на 800 м (а пулеметчикам и дальше), более целесообразна и результативна стрельба именно тяжелыми пулями.

Для лучшего уяснения процесса приведем баллистическое толкование схемы 118. Чтобы при стрельбе на дистанции 200 м тяжелая пуля попала в ту же точку, что и легкая, ей надо придать при выстреле больший угол возвышения, то есть «приподнять» траекторию практически на один-два сантиметра.

Если винтовка пристреляна легкими пулями на дистанции 200 м, тяжелые пули в конце дистанции пойдут сантиметра на полтора-два ниже (если прицел установлен для стрельбы легкими пулями). Но на дистанции 400 м скорость легкой пули уже падает быстрее, чем скорость пули тяжелой, которая имеет более совершенную аэродинамическую форму. Поэтому на дистанции 400-500 м траектории и точки попадания обеими пулями совпадают. На более дальних дистанциях легкая пуля еще более теряет скорость по сравнению с тяжелой. На дистанции стрельбы 600 м легкая пуля попадает в ту же точку, что и тяжелая, если ей при выстреле придать больший угол возвышения. То есть теперь надо поднимать траекторию уже при стрельбе легкой пулей. Поэтому при стрельбе из винтовки, пристреляной тяжелыми пулями, на дистанции 600 м легкие пули пойдут ниже (реально на 5-7 см). Тяжелые пули на дальностях стрельбы свыше 400-500 м имеют более настильную траекторию и большую кучность, поэтому они более предпочтительны для стрельбы по отдаленным целям.

Легкая пуля образца 1908 г. имеет поперечную нагрузку 21.2 г/см2. тяжелая пуля образца 1930 г. — 25,9 г/см2 (табл. 39).

Утяжеление пули образца 1930 г. выполнено за счет удлиненного носика и конусообразной хвостовой части (б на схеме 119). Легкая пуля образца 1908-1930 гг. имеет в хвостовой части коническое углубление- Наличие этого внутреннего конуса (а на схеме 119) создает выгодные условия для обтюрации пороховых газов, так как хвостовая часть пули от давления газов расширяется по диаметру и плотно прижимается к стенкам канала ствола.

Схема 119. Легкая и тяжелая пули:а — легкая пуля; б — тяжелая пуля:1 — оболочка: 2 — сердечник

Это обстоятельство позволяет увеличить срок службы ствола, потому что легкая пуля хорошо врезается в нарезы, прижимается к ним и получает вращательное движение даже при очень незначительной высоте нарезов. Таким образом, внутренний полый конус легкой пули при ее меньшей массе и инертности повышает живучесть стволов.

По этой же причине стрельба легкой пулей из старых винтовок с изношенными стволами получается точнее и результативнее, чем стрельба тяжелыми пулями. Тяжелая пуля при прохождении старого ствола «счесывается» неровностями раковин от ржавчины и разгара, как напильником, уменьшается в диаметре и при выходе из ствола начинает «гулять» в нем. Легкая пуля постоянно расширена в стороны своей конусной юбкой и во время работы в стволе прижата к его внутренним стенкам.

Запомните: стрельба легкой пулей повышает живучесть стволов вдвое. Из новых стволов качество стрельбы (кучность боя) получается лучше при стрельбе тяжелой пулей. Из старых, изношенных стволов качество стрельбы получается лучшим при стрельбе легкой пулей с внутренним конусом хвостовой части.

Легкие пули имеют преимущество настильной траектории до дальности 400-500 м. Начиная с дальности 400-500 м и больше тяжелая пуля имеет преимущества во всех отношениях (энергия пули больше, рассеивание меньше и настильнее траектория). Тяжелые пули меньше отклоняются деривацией и ветром, настолько меньше, насколько больше они весят по сравнению с легкой пулей (примерно на 1/4). На дистанциях свыше 400 м вероятность попадания при стрельбе тяжелой пулей втрое больше, чем при стрельбе легкой пулей.

При пристрелке на дистанции 100 м тяжелые пули идут на 1-2 см ниже, чем легкие.

Носик (вершина) тяжелой пули образца 1930 года окрашивается в желтый цвет. Легкая пуля образца 1908 г. особых отличительных знаков не имеет.

ОТБОР ОРУЖИЯ

Отбор оружия по кучности боя производится только практическим отстрелом оружия. При этом стрельба ведется с мягкого упора на дистанции не менее 100 м для стволов нормального калибра и не менее 50 м для малокалиберного. Разброс для стволов нормальных калибров на такой дистанции не должен превышать 8х8 см, но в реальности нередко выявляют стволы с кучностью боя 5х4 см. Такие случаи происходят довольно часто. В практике автора был случай, когда неожиданно для служивых серийная винтовка СВУ (снайперская винтовка укороченная) показала кучность 4х3 см. Кучность боя трехлинейных винтовок без штыка с одними сальниками, намотанными на ствол дульной части, иногда при отборе оружия выявлялась в размере 3х2 см, а иногда и вообще пуля в пулю. Однако следует учесть, что хороший ствол, оказавшийся на плохо изготовленной ложе, может показать отвратительную кучность. Поэтому стоит пробовать разные стволы на разных ложах.

Кучность боя малокалиберных стволов колеблется в широких пределах в зависимости от системы. У охотничьих моделей он может быть от 10х12 до 3х3 см. У винтовок «Биатлон», различных моделей разброс обычно от 3х2 до 2х1,5 см. Поэтому в операциях по обезвреживанию террористов (особенно при необходимости взять противника живым) желательно использование винтовок «Биатлон-4», «Биатлон-6», «Биатлон-7», обладающих более кучным, стабильным и сильным боем по сравнению с обычными охотничьими образцами.

ОКСИДИРОВАНИЕ ОРУЖИЯ

В настоящее время армейское оружие для предохранения от оржавления и для придания ему красивого внешнего вида покрывается специальным красящим составом. Оружие прежних лет выпуска и современные пистолеты для этих целей покрывались тонкой оксидной пленкой. Оксидной пленкой покрываются образцы особо точного снайперского оружия и охотничьи карабины. Ниже приводятся способы воронения (оксидирования), наиболее часто применяемые в оружейной практике со времен Первой мировой войны.

Оксидирование английским «ржавым» лаком

Для воронения этим способом берутся техническая соляная кислота и азотная кислота в одинаковых объемах, смешиваются и в этой смеси растворяются железная кузнечная окалина и железные (стальные) стружки в одинаковых количествах до тех пор, пока они не перестанут растворяться. Полученную жидкость наносят на необходимую деталь или ствол несколькими слоями с обязательной просушкой после нанесения каждого слоя.

Этот процесс очень долгий и может продлиться несколько суток. Но получаемое покрытие имеет очень красивый темно-коричневый цвет и предохраняет оружие от ржавчины, как никакое другое. Оружие, покрытое «ржавым» лаком, может пролежать неделю в воде без признаков оржавления.

Оксидирование селитрой

Детали оружия опускают в расплавленную кипящую селитру (калийную или натриевую) и выдерживают там до придания металлу очень красивого темно-синего цвета. Прилипшую селитру затем смывают горячей водой. Оксидная пленка держится очень долго. Так воронили револьверы-наган и «Смит-Вессон» на тульских заводах еще сто лет назад и сохранившиеся образцы этого оружия до сих пор не потеряли внешнего вида.

Оксидирование гипосульфитом

Деталь опускают в насыщенный раствор медного купороса, предварительно добавив в него по каплям 5-6 капель серной кислоты. Деталь выдерживается до цвета красной меди. Затем ее прополаскивают в горячей воде и опускают на 20-30 секунд в профильтрованный насыщенный раствор гипосульфита. После чего деталь выдерживается в растворе калийных квасцов 1:10 на протяжении 10-12 часов, затем ее промывают, сушат и смазывают олифой. Покрытие получается цвета черной пластмассы и держится очень долго.

Щелочное оксидирование

Деталь кипятят при температуре 125-130° на протяжении 40-90 минут в растворе 700 г каустической соды, 100 г нитрата натрия, 100 г буры и 1 л воды, затем промывают и покрывают олифой.

Воронение (огневое оксидирование) второстепенных деталей

Воронение (огневое оксидирование) второстепенных деталей (кроме стволов, затворов и ствольных коробок) производится нагревом деталей на огне до цветов побежалости (но не передержать!) с последующим опусканием их в любое минеральное масло. Или в металлическом ящике засыпают деталь древесным толченым углем и нагревают на огне.

ВНИМАНИЕ: перед любым видом оксидирования детали обезжирить в 10%-ном растворе соды или поташа.

Стволы при жидкостном оксидировании плотно закрывать пробками со стороны патронника и дульного среза.

Общеармейская инструкция по оксидированию деталей винтовки и карабина

Для предохранения металлических деталей винтовки и карабина от ржавления поверхность деталей оксидируется.

Для получения качественного оксидного покрытия рекомендуется выполнять операции в такой последовательности:

  1. Подготовка поверхности.

  2. Оксидирование.

  3. Последующая отделка.

  1. 1. Детали обезжиривать в ванне, содержащей раствор следующего состава:

    2. Детали обезжиривать при бурном кипении раствора в течение 20-30 минут.

    3. Освежать (корректировать) раствор нужно по мере его израсходования путем добавления составных частей до первоначальной концентрации. Плавающие на поверхности обезжиривающего раствора жировые загрязнения должны время от времени удаляться.

    б) Промывка в воде

    После обезжиривания детали промыть в водопроводной проточной воде (при комнатной температуре) 3-4-кратным погружением.

    Хорошо обезжиренная деталь должна полностью смачиваться водой. Если вода при промывке покрывает поверхность детали не полностью, а собирается каплями, это указывает на недостаточное обезжиривание.

    При наличии ржавчины на поверхности деталей, а также при повторном оксидировании их с целью удаления первоначальной оксидной пленки травление деталей производить по инструкции (приложение 5).

    г) Промывка в воде

    После травления детали промыть в холодной проточной воде 3-4-кратным погружением.

    ПРИМЕЧАНИЕ. После травления и промывки во избежание ржавления не разрешается, чтобы детали находились на воздухе свыше 10 секунд. При вынужденной задержке детали необходимо опускать на 5 минут в мыльный раствор, после чего вынуть и высушить; образовавшаяся мыльная пленка предохраняет детали от ржавления.

    Общие замечания по операциям подготовки поверхности

    1. При наличии на поверхности деталей толстого слоя смазки или жира перед обезжириванием полностью удалить их, протирая сухими тряпками; после чего детали отправить для обезжиривания.

    2. Пружины винтовки и карабина травлению не подвергать, а чистить наждачным полотном или крацевальной щеткой.

  2. 1. Детали оксидировать в ванне, содержащей раствор следующего состава:

    ПРИМЕЧАНИЕ. В качестве окислителей одинаково применимы нитрат и нитрит натрия или калия в сумме, не превышающей 200 г как в указанной смеси, так и в отдельности.

    2. Приготовлять раствор нужно в специальном подогреваемом баке, предварительно хорошо очищенном от грязи и тщательно промытом водой.

    Предварительно раздробленную на мелкие куски (размером 40-50 мм в поперечнике) каустическую соду загружают в бак, заливают водой и кипятят до растворения Затем вводят нитрат и нитрит натрия. После растворения компонентов оксидирующего состава раствор оставляется в полном покое на 2-4 часа. Этим приготовление раствора для оксидирования заканчивается.

    Перед оксидированием деталей раствор подогревается до бурного кипения.

    3. Детали, подготовленные к оксидированию, погружать в бурно кипящий раствор в сетчатых железных корзинах.

    4. Начальная температура раствора (при погружении деталей в ванну) 136-138°С, конечная (в конце оксидирования) — 142-145°С. Для закаленных деталей температура ванны при погружении 140°С с постепенным повышением ее к концу оксидирования до 145-146°С.

    ПРИМЕЧАНИЯ. 1. Признаком изменения концентрации раствора при постоянном объеме служит температура кипения. Понижение температуры кипения с сохранением объема свидетельствует об уменьшении концентрации, а повышение температуры кипения — об увеличении концентрации. Нарушение режима ванны ведет к понижению качества окраски. 2. Чтобы повысить температуру кипения раствора на 1°С, следует добавить 10 г едкого натра на каждый литр раствора. Понижение температуры кипения раствора достигается разбавлением его водопроводной водой или водой после ополаскивания (см. ниже — примечание).

    5. Детали выдерживать в растворе в процессе оксидирования 1,5 часа.

    Во время оксидирования детали через каждые 25-30 минут вынимать из оксидирующего раствора и ополаскивать в водопроводной воде при комнатной температуре, опуская их в воду 2-3 раза.

    ПРИМЕЧАНИЕ. Вода после ополаскивания может быть использована для пополнения оксидировочной ванны.

    в) Промывка водой

    После оксидирования детали промыть водопроводной водой (желательно под давлением из брандспойта) до полного удаления остатков оксидирующего раствора с поверхности деталей.

    Общие замечания по операциям оксидирования

    1. При погружении деталей в оксидирующий раствор вся поверхность их должна полностью омываться раствором

    2. Появление на поверхности оксидируемых деталей налета зеленого или желтого цвета указывает на повышенную температуру оксидирующего раствора (или повышенную концентрацию каустической соды), для понижения которой в ванну необходимо добавить воды.

    3. По мере пользования раствором в ванне для оксидирования происходит накапливание осадка гидрата окиси железа. Осадок периодически удалять специальными скребками при температуре раствора несколько ниже точки кипения.

  3. а) Выдержка в мыльном растворе

    1. После оксидирования детали погружать в кипящий мыльный раствор следующего состава:

    ПРИМЕЧАНИЯ: 1. Во избежание свертывания мыла мыльный раствор следует готовить на предварительно прокипяченной воде. 2. При свертывании мыла раствор выливают и заменяют свежим. 3. Время выдержки деталей в горячем мыльном растворе 3- 5 минут.

    Вынутые из мыльного раствора детали просушивать на воздухе до полного удаления влаш с поверхностей.

    1. Просушенные детали помещают в ванну, содержащую веретенное масло или ружейную смазку.

    2. Температура смазки в ванне 105-115°С; выдержка в ванне 2-3 минуты.

    ПРИМЕЧАНИЕ. Применять холодную смазку не рекомендуется. Горячие смазанные детали помещать на специальные столы для отекания излишка масла и по охлаждении их нужно протирать от избытка масла и от красноватого налета. После этого детали направить на контроль качества оксидного покрытия.

    Контроль качества оксидного покрытия

    Качество оксидного покрытия устанавливается внешним осмотром поверхности оксидированных деталей. Поверхность деталей после оксидирования должна иметь ровную окраску черного цвета.

    Для деталей с грубо обработанной поверхностью, а также для участков, подвергнутых местной сварке или штамповке, допускается слабая разница в оттенках цвета.

    На поверхности оксидированных деталей не должно быть красноватого осадка и незаоксидированных участков. Детали с красным налетом возвращать на протирку, а детали с незаоксидированными участками подвергать повторному оксидированию, для чего после обезжиривания и промывки водой обработать при комнатной температуре в ингибированной соляной кислоте по инструкции (приложение 5) до растворения оксидной пленки. Затем детали снова тщательно промыть водой и дальше обработать, как детали, вновь поступившие на оксидирование.

    В случае ржавления деталей в самой ванне необходимо очистить ванну и обновить раствор.

    Брызги щелочного раствора разъедают ткань одежды и при попадании на тело вызывают ожоги, поэтому лица, занятые щелочным оксидированием, должны во время работы надевать брезентовую спецодежду, резиновые сапоги и резиновые перчатки.

    По окончании работы полы в помещении для оксидировки должны быть тщательно промыты водой, а все ванны во избежание загрязнения должны быть накрыты крышками.

Приложение 5Инструкция по очистке деталей от ржавчины химическим способом

А. Общие сведения

1. Очистка стальных деталей от ржавчины должна производиться в ингибированной соляной кислоте, представляющей смесь соляной кислоты (уд. вес 1,18) с ингибитором марки ПБ-5 (0,8-1% по отношению к объему соляной кислоты). Неингибированную кислоту применять запрещается.

Ингибированная соляная кислота хорошо очищает стальные детали от ржавчины, практически не растворяет металл.

2. Ингибированная соляная кислота отгружается потребителям с заводов Министерства химической промышленности в обычных железнодорожных цистернах или в бутылях.

3. Очистка стальных деталей от ржавчины состоит из следующих основных операций: подготовки деталей к очистке, травления в кислоте, промывки с пассивированием, протирки, сушки и смазки.

Б. Подготовка деталей к очистке

4. Обезжирить детали в ванне, содержащей раствор следующего состава:

Кальцинированная или каустическая сода…………..100 г

Вода………………………………………………………………………….1 л

или

Мыло твердое…………………………………………………………. 30 г

Вода………………………………………………………………………….1 л

Обезжиривание ведется при кипении раствора.

5. Промыть детали в холодной проточной воде и охладить до комнатной температуры (18-20°С). Хорошо обезжиренная деталь должна полностью смачиваться водой. Если вода при промывке покрывает поверхность детали не полностью, а собирается каплями, то это указывает на недостаточное обезжиривание.

ПРИМЕЧАНИЕ. При наличии на поверхности деталей толстого слоя смазки перед обезжириванием, необходимо ее удалить сухой ветошью.

В. Травление

6. Вытравить детали в эмалированных, деревянных или в сварных железных ваннах, содержащих раствор следующего состава:

Номер
ванны
Для каких деталей применяетсяСостав травильной ванны, л
водаингибированная
соляная
кислота
1Сильно пораженных ржавчиной и не имеющих полированных поверхностей100
2Не сильно пораженных ржавчиной и имеющих полированные поверхности5050
3Не сильно пораженных ржавчиной с полировкой высокого качества,
при требовании очень строгого сохранения их размеров и полировки
8020

7. Для приготовления раствора в отмеренное количество воды влить ингибированную соляную кислоту; воду в кислоту лить нельзя, так как это может привести к разбрызгиванию кислоты и к сильным ожогам.

8. Температура травильного раствора и погруженных в него деталей должна быть в пределах 10-30°С.

Время выдержки деталей в травильной ванне устанавливается опытным путем; в зависимости от состава ванны, степени поражения ржавчиной поверхности очищаемых деталей и состава металла время выдержки может колебаться от 20 минут до 3 часов.

По истечении установленного времени травления вынуть детали из травильного раствора и тщательно промыть в ванне с холодной проточной водой, после чего отправить детали на промывку в растворе пассиваторов или на ремонт и оксидирование.

9. При травлении сильно поржавевших деталей следует растворять только часть ржавчины, так как оставшаяся ржавчина от действия кислоты сильно разрыхляется и может быть снята щеткой и смыта водой.

10. Удалять ржавчину из каналов стволов при хорошем состоянии оксидировки наружных поверхностей нужно путем заливки травильного раствора в канал ствола, при этом ствол устанавливают в наклонное положение и нижний конец его закрывают пробкой.

11. Травильный раствор действует (приблизительно) в течение 20 закладок деталей при средней продолжительности очистки, после чего раствор сильно загрязняется и его необходимо заменить.

12. Персонал, обслуживающий травильные ванны, должен иметь резиновые перчатки, фартук и очки.

Внимание! При травлении стволов с хромированными каналами необходимо предохранить канал ствола от попадания в него ингибированной соляной кислоты, так как она разъедает хром. Для этого канал ствола до обезжиривания слегка смазывать пушечной смазкой и прочно закупоривать с обоих концов резиновыми или деревянными пробками.

Г. Промывка в растворе пассиваторов

13. Неоксидируемые детали с целью образования на их поверхности пленки, отчасти предохраняющей от ржавления, после травления и промывки погрузить в железную ванну, содержащую раствор следующего состава:

Двухромовокислый калий (хромпик калиевый)……. 20 г

Каустическая сода ……………………………………………… 50 г

Вода……………………………………………………………………. 1 л

Азотистокислый натрий — нитрит натрия ………….. 30 г

Вода…………………………………………………………….. 1 л

14. Промывать детали в кипящем растворе. Время выдержки деталей в ванне 10-15 минут.

Д. Протирка и смазка

15. После промывки в растворе пассиваторов тщательно протереть детали насухо или просушить, а затем (если они не идут непосредственно на ремонт) погрузить на 2-3 минуты в ванну с ружейной смазкой, нагретой до температуры 105-115°С.

ИЗНОС КАНАЛА СТВОЛА ПО ПОЛЯМ, ОКРУГЛЕНИЕ ИЛИ СКРОШЕННОСТЬ УГЛОВ ПОЛЕЙ НАРЕЗОВ

Для выявления этих неисправностей необходимо тщательно протереть канал ствола, осмотреть его и обмерить войсковым калибром К-2.

(I) Скругление или скрошенность углов полей нарезов, а также износ канала ствола по полям (калибр К-2 входит в канал ствола с дульной части) допускаются, если винтовка удовлетворяет требованиям нормального боя.

При вхождении калибра К-2 в канал ствола (как с рассверленной, так и нерассверленной дульной частью) с дульной части на длину более 45 мм от дульного среза винтовку, не удовлетворяющую вследствие этого требованиям нормальною боя, браковать.

При вхождении калибра К-2 в нерассверленный канал ствола с дульной части на длину до 45 мм винтовку, не удовлетворяющую вследствие этого требованиям нормального боя, отправить в вышестоящий ремонтный орган.

(II) Скругление или скрошенность углов полей нарезов, а также износ канала ствола по полям (калибр К-2 входит в канал ствола с дульной части на длину не более 10 мм, а в канал ствола с рассверленной дульной частью на длину не более 51 мм от дульного среза) допускаются, если винтовка при этом удовлетворяет требованиям нормального боя.

При вхождении калибра К-2 в канал ствола с дульной части на длину от 10 до 45 мм у винтовки, удовлетворяющей требованиям нормального боя, а также при вхождении калибра К-2 в канал ствола до 45 мм у винтовки, не удовлетворяющей вследствие этого требованиям нормального боя, рассверлить дульную часть канала ствола (см. ранее).

ЛОЖИ И ПРИКЛАДЫ

Ложа является одной из составных частей снайперской винтовки. У магазинных (трехлинейных) винтовок ложа служит для соединения всех частей и для удобства действия винтовкой при стрельбе. В соответствии с этим назначением к ложе предъявляется ряд требований, главнейшие из которых следующие:

  • Ложа должна иметь форму и размеры, обеспечивающие удобство обращения с винтовкой во всех случаях ее применения, и быть достаточно прочной при минимально возможном весе.

  • Материал ложи должен обладать хорошей устойчивостью против влаги. Это требование чрезвычайно важно, так как ложа оказывает влияние на меткость стрельбы и стабильность боя винтовки.

  • Устройство ложи должно обеспечивать однообразное положение ствола и ствольной коробки, не изменяемое при эксплуатации, а также при сборке и разборке.

  • Ложа должна изготавливаться из материала, не изменяющего своих свойств при длительной эксплуатации и при хранении. Материал этот должен хорошо прирабатываться к металлу ствольной коробки.

Последнее требование наиболее актуально. Ложа не должна коробиться и трескаться при хранении и эксплуатации. Ложи чаще всего изготавливаются из березовой древесины. Лучшие ложи для очень удачных стволов изготавливаются из ореха, бука или граба. Древесина этих пород практически не коробится, не трескается и хорошо прирабатывается к металлу. В любом случае древесину для точного оружия подвергают длительному высушиванию. Чем дольше высушена древесина для ложи, тем меньше она коробится и ведет за собой ствол и ствольную коробку. Для изготовления лож и прикладов особо точного оружия древесину высушивают в темноте при естественных температурах на протяжении до 10 лет. В последнее время для производства лож все чаще стала применяться пластмасса. В конце 50-х годов для изготовления лож снайперских винтовок начали применять многослойную древесину из проклеенного березового шпона, расположенного волокнами перпендикулярно друг к другу. Такие ложи оказались наиболее практичными в изготовлении и эксплуатации. Изготавливаются вплоть до наших дней.

Для влагостойкости наружная поверхность ложи чисто обрабатывается, пропитывается сосновой смолой или 5-10%-ным раствором нефтебитума в минеральном масле (что придает поверхности коричневый цвет) и лакируется. Такая обработка древесины ложи делает ее негигроскопичной, чем ложа предохраняется от разбухания и последующей усушки. Кроме того, пропитанная смолой древесина ложи предохраняется от загнивания и от поражения насекомыми. Ложи, изготовленные из березовой древесины, в некоторых случаях (на заказ) покрываются морилкой и горячим раствором, состоящим из равных частей воска, канифоли и скипидара.

В ложе магазинной винтовки различают три части: цевье, шейку и приклад (7, 2, 3 на фото 200). В ложах боевых винтовок имеется еще и ствольная накладка (4 на фото 200). Передняя часть ложи, называемая цевьем, служит для помещения ствола со ствольной коробкой, для предохранения ствола от погибов при случайных ударах, для предохранения рук стрелка от ожогов при сильно нагретом стволе.

Фото 200. Ложа магазинной винтовки:1 — цевье; 2 — шейка ложи; 3 — приклад; 4 — ствольная накладка; 5 — крепежные ложевые кольца; 6 — шомпол

Поперечные и продольные размеры цевья в месте его охвата левой рукой устанавливаются, исходя из соображений удобства удержания оружия, поперечные размеры остальной части цевья определяют из соображений прочности.

Подгонка ложи к ствольной коробке должна быть однообразной и равномерной, по всему размеру ствольной коробки. Неоднообразное положение ствольной коробки в специально выбранном гнезде ложи при местных несимметричных прилеганиях вызывает односторонние напряжения при выстреле и увеличивает колебания ствола, что приводит к увеличению разброса. Более того, оно изменяет их характер в непредсказуемую сторону. Тщательно подогнать ствольную коробку к ложе очень трудно. Поэтому чаще всего ствольную коробку «сажают» в гнездо ложи на две опорные точки — под патронником и под хвостовиком с люфтом между ними. У боевых магазинных винтовок нормального калибра упор ствольной коробки обязательно опирается на опорный нагель, причем опорные поверхности нагеля и выступа ствольной коробки должны контактировать по всей площади. Если импульс отдачи принимается нагелем сбоку, то это вызывает при выстреле все те же односторонние напряжения с вытекающими последствиями. Бой такой винтовки также не будет точным. Обычно после подгонки опорного выступа и нагеля друг к другу сначала затягивают до упора опорный винт, затем хвостовой, после чего хвостовой винт «отпускают» на пол-оборота назад. Это делается для того, чтобы предотвратить напряженный изгиб ствольной коробки. Лучший вариант сопряжения металлических частей винтовки с деревянными достигается в том случае, когда ствольная коробка хорошо посажена и приработана с посадочным местом ложи, а ствол будет работать как стержень с одним закрепленным концом. В спортивном и целевом оружии для этих целей на ствольной коробке делается толстая стальная рифленая «подошва» правильных прямоугольных размеров. Посадочное место ложи имеет такую же прямоугольную форму. Все это позволяет плотно посадить ствольную коробку в посадочном гнезде и плотно, до отказа, затянуть опорный и хвостовой соедини* тельные винты. При этом получается очень плотная идеальная посадка и прижатие металлических частей к деревянной ложи без люфтов и смещений. В таком случае ствол не должен касаться цевья ложи, которое имеет удлиненную форму для удобства удержания, крепления антабок и других подсобных приспособлений.

В боевых винтовках, где есть необходимость длинного цевья и ствольной накладки, эти деревянные части должны плотно охватывать ствол по всей длине (что сделать весьма непросто), или необходимо посадить ствол на два матерчатых мягких сальника в начале и в конце цевья. Между ними должен быть люфт, для чего полукруглым резцом (заточенной закраиной гильзы) выбирается слой дерева вокруг ствола примерно на 1 мм. В крайнем случае ствол сажается на один сальник, чтобы он не болтался между цевьем и накладкой. Древесина для изготовления лож для того и выдерживается несколько лет, чтобы все, что могло в ней деформироваться, «покрутиться», покоробиться, при сушке покрутилось и покоробилось. После чего ложа вырезается на станке или вручную, и больше в ней ничего уже не коробится и не перекручивается.

Ложа, которая начинает коробиться и «покручиваться» на готовом оружии, вызывает местные односторонние боковые напряжения металла, ведущие к его повышенной вибрации при выстреле. Ложа, из каких бы пород дерева она ни была изготовлена, должна быть без сучков и местных уплотнений. Сучок, упирающийся в ствольную коробку в каком-то одном месте, создает эти самые местные напряжения и заметно ухудшает бой винтовки. Сучок, выступающий из цевья и упирающийся в ствол, резко повышает разброс. Ложа, изготовленная из невыдержанной, непросушенной древесины, коробится настолько, что при длительном хранении оружия на складах сгибает винтовочные стволы. От ложи зависит очень много. Мастера старой формации отборные стволы подгоняли под ореховые или клееные шпоновые ложи и «сажали» эти стволы в ложи намертво, на эпоксидный клей. Кучность боя таких винтовок и карабинов, не имеющих внутри посадочных люфтов и смещений, улучшается.

На автоматических винтовках СВД следует следить за плотностью соединения приклада со ствольной коробкой. Ослабленный винт крепления вызывает шатание приклада и непредсказуемый разброс.

Внимание! Смазывать ложу оружейными минеральными маслами нельзя. Дерево от этого становится хрупким. Для того чтобы предохранить ложу от действия влаги, ее в сухом виде смазывают тонким слоем льняной олифы (или любой растительной олифы).

Военные и охотники-промысловики хорошо знают, что на природе всегда присутствует влага, которая берется неизвестно откуда. Отсыревает все — и обмундирование, и оружие. Чтобы сохранить снайперскую винтовку от воды, лучше всего покрыть ее слоем воска. Для этого в 4 частях горячего терпентина (или живичного натурального скипидара) растворяют 1 часть пчелиного воска. Этим раствором, который можно носить с собой в масленке, пользуясь тампоном из куска ветоши или бинта, покрывают один раз наружную поверхность металлических и деревянных частей винтовки. Терпентин довольно быстро испаряется, а тонкий слой воска остается. Воск держится на оружии довольно цепко, в отличие от масляного покрытия, и прекрасно предохраняет оружие от снега, капелек воды и т.д. (способ финских снайперов).

ПРАВКА ИЗОГНУТЫХ СТВОЛОВ

Для правки изогнутого ствола:

  • отделить ствол со ствольной коробкой от ложи (приклада, цевья);

  • прочистить и насухо протереть канал ствола;

  • определить характер и место изгиба по форме тени в канале ствола;

  • при пологом изгибе положить ствол на медную наковальню специальной формы (схема 152) так, чтобы место изгиба находилось над полой частью наковальни, а вершина его была направлена вверх. В зависимости от длины изгиба ствол укладывается поперек наковальни по диагонали, но так, чтобы его вершина располагалась посередине полой части наковальни;

  • выправить ствол медным молотком весом от 0,4 до 2 кг. Сила удара молотком должна быть такой, чтобы ствол не получил перегиба в противоположную сторону или вмятин;

  • проверить по тени прямолинейность ствола и, если окажется, что ствол не выправлен, повторить правку.

ВНИМАНИЕ! Правкой выправляются, казалось бы, безнадежные стволы; более того, этим стволам возвращается кучный и стабильный бой. Но правка ствола — очень трудный, аккуратный и ответственный процесс, и она может быть выполнена только опытным оружейником.

Схема 152. Наковальня для правки ствола:1 — подставка; 2 — наковальня; 3 — опора

Оцените статью
Маркировка-Про