Определение транзисторов по маркировке

Содержание
  1. Типоразмеры SMD резисторов
  2. Размеры SMD резисторов и их мощность
  3. Зачем нужна маркировка
  4. Маркировка на практике
  5. Маркировка SMD компонентов
  6. Маркировка импортных SMD
  7. Маркировка и взаимозамена
  8. Маркировка года и месяца изготовления
  9. Что дает применение
  10. Сравнение с обычными элементами
  11. SMD маркировка электрических элементов
  12. SMD маркировка конденсаторов
  13. SMD маркировка резисторов
  14. Транзисторы средней мощности, аналоги SS8050 и SS8550
  15. Маркировка советских резисторов
  16. Японская система JIS
  17. Форма и размеры SMD компонентов
  18. Американская система JEDEC
  19. Цветовая маркировка транзисторов
  20. Создание устройства
  21. Более современные варианты
  22. Символьно — цветовая маркировка транзисторов
  23. Применение транзисторов
  24. Схемы включения и основные параметры биполярных транзисторов
  25. Включение p-n-р транзистора по схеме ОЭ
  26. Включение прибора схеме ОК
  27. Включение транзистора по схеме с ОБ
  28. Транзисторы в корпусе типа КТ-26
  29. Маркировка SMD диодов, справочник кодовых обозначений
  30. Расшифровка SMD параметров. (для транзисторов )
  31. Как проверить транзистор мультиметром из предложения TME
  32. SMD транзисторы
  33. Особенности маркировки SMD транзисторов
  34. Проверка транзисторов с помощью тестеров электронных элементов
  35. Транзисторы в корпусе типа КТ-27
  36. Транзисторы MOSFET в корпусе SOT-23
  37. Характеристики современных транзисторов с корпусами SOT-23
  38. Как собрать корпус SOT23 собственноручно
  39. Кодовая и цветовая маркировка транзисторов, диодов и стабилитронов
  40. Цветовая маркировка диодов и стабилитронов
  41. Разновидности маркировок.
  42. Европейская система маркировки SMD.
  43. Японская система.

Типоразмеры SMD резисторов

Под этим термином обычно подразумевается сразу несколько базовых характеристик: размер, форма, а также тип корпуса и расположение выводов.

К примеру, если рассматривать стандартную микросхему типоразмера DIP, то она изготовлена в виде плоского корпуса (значения длины и ширины — индивидуальны для каждой конкретной платы), а расположение выводов в данном случае — двустороннее, и находятся они перпендикулярно основанию.

Что касается типоразмера SMD резисторов, то чаще всего применяется маркировка в соответствии со стандартами JEDEC.

Например, давайте рассмотрим SMD резистор с маркировкой 0603. Как и в случае с дросселем, который мы рассматривали выше, здесь все предельно просто: первые две цифры обозначают длину, последние — ширину. Таким образом, SMD резистор 0603 имеет следующие габариты: длина — 0,060 дюйма, ширина —  0,030 дюйма.

Обратите внимание: чтобы быстро перевести дюймы в миллиметры, достаточно фактический размер SMD компонента умножить на 25,4.

Размеры SMD резисторов и их мощность

Фактические габариты детали напрямую будут зависеть от максимальной мощности рассеивания. В таблице ниже указаны основные размеры и технические характеристики для часто используемых на производстве и в быту SMD резисторов.

Зачем нужна маркировка

Современному радиолюбителю сейчас доступны не только обычные компоненты с выводами, но и такие маленькие, темненькие, на которых не понять что написано, детали. Они называются “SMD”. По-русски это значит “компоненты поверхностного монтажа”. Их главное преимущество в том, что они позволяют промышленности собирать платы с помощью роботов, которые с огромной скоростью расставляют SMD-компоненты по своим местам на печатных платах, а затем массово “запекают” и на выходе получают смонтированные печатные платы. На долю человека остаются те операции, которые робот не может выполнить. Пока не может.

Маркировка на практике

Применение чип-компонентов в радиолюбительской практике тоже возможно, даже нужно, так как позволяет уменьшить вес, размер и стоимость готового изделия. Да ещё и сверлить практически не придётся. Другое важное качество компонентов поверхностного монтажа заключается в том, что благодаря своим малым размерам они вносят меньше паразитных явлений.

Дело в том, что любой электронный компонент, даже простой резистор, обладает не только активным сопротивлением, но также паразитными ёмкостью и индуктивностью, которые могут проявится в виде паразитных сигналов или неправильной работы схемы. SMD-компоненты обладают малыми размерами, что помогает снизить паразитную емкость и индуктивность компонента, поэтому улучшается работа схемы с малыми сигналами или на высоких частотах.

Разнообразные корпуса транзисторов.

Маркировка SMD компонентов

SMD компоненты все чаще используются в промышленных и бытовых устройствах. Поверхностный монтаж улучшил производительность по сравнению с обычным монтажом, так как уменьшились размеры компонентов, а следовательно и размеры дорожек. Все эти факторы снизили паразитические индуктивности и емкости в электрических цепях.

КодСопротивление101100 Ом471470 Ом1021 кОм1221. 2 кОм10310 кОм12312 кОм104100 кОм124120 кОм474470 кОм

Полезная информация: как проверить транзистор с помощью мультимера.

Маркировка импортных SMD

Маркировка импортных SMD транзисторов происходит в основном по нескольким принятым системам. Одна из них – это система маркировки полупроводниковых приборов JEDEC. Согласно ей первый элемент – это число п-н переходов, второй элемент – тип номинал, третий – серийный номер, при наличие четвертого – модификации.

Вторая распространенная система маркировка – европейская. Согласно ей обозначение SMD транзисторов происходит по следующей схеме: первый элемент – тип исходного материала, второй – подкласс прибора, третий элемент – определение применение данного элемента, четвертый и пятый – основную спецификацию элемента.

Третьей популярной системой маркировки является японская. Эта система скомбинировала в себе две предыдущие. Согласно ей первый элемент – класс прибора, второй – буква S, ставится на всех полупроводниках, третий – тип прибора по исполнению, четвертый – регистрационный номер, пятый – индекс модификации, шестой – (необязательный) отношение к специальным стандартам.

Что бы к Вам ни попало в руки, для полной идентификации данного элемента следует применять маркировочные таблицы и по ним определить все характеристики данного элемента. По оценкам специалистов соотношение между производством ЭРЭ в обычном и SMD-исполнении должно приблизиться к 30:70. Многие радиолюбители уже начинают с успехом осваивать применение SMD в своих конструкциях.

Маркировка и взаимозамена

Электронные компоненты для поверхностного монтажа прочно вошли в нашу жизнь и сегодня составляют не менее 70% от числа всех производимых про­мышленностью электронных приборов и устройств. Чтобы иметь представле­ние о виде этих приборов, достаточно открыть корпус любого современного устройства, например мобильного телефона. В далеком прошлом элементы SMD можно было увидеть разве что в наручных электронных часах и разработ­ках ВПК.

SMD (Surface Mounted Device) — это компоненты, предназначенные для поверхностного монтажа. SMD резисторы и конденсаторы выглядят как кирпичики.

Сегодня любой современный печатный монтаж, сделанный производствен­ным способом (то есть серийно), немыслим без этих электронных компонен­тов, имеющих малые размеры и поверхностный монтаж на плате. Поэтому они получили названия планарных элементов в SMD (SMT) корпусах. Эти эле­менты не очень популярны среди радиолюбителей именно из-за трудностей монтажа: используется технология насыщения, минимизация и интеграция до­рожек и мест для пайки элементов в печатном монтаже. А для ремонтников- профессионалов и опытных радиолюбителей SMD-элементы – основной рабо­чий материал.

SMD транзистор на схеме

Как по маркировке правильно определить тип установленного в плату SMD- прибора, быстро и точно найти замену, подскажет предлагаемый материал. Поскольку многие корпуса внешне похожи друг на друга, важнейшее значе­ние приобретают их размеры, а для идентификации прибора необходимо знать не только маркировку, но и тип корпуса.

Возможна ситуация, когда фирмы-производители в один и тот же корпус под одной и той же маркировкой помещают разные по назначению и электричес­ким характеристикам приборы. Так, фирма Philips помещает в корпус SOT-323 мини-транзистор n-p-n проводимости BC818W и маркирует его кодом Н6, а фирма Motorola в такой же корпус с точно такой же маркировкой Н6 помеща­ет р-п-р транзистор MUN5131T1.

https://youtube.com/watch?v=_HGBcpSAYh8%3Ffeature%3Doembed

Можно спорить о частоте таких совпадений, но они нередки и встречаются даже среди продукции одной фирмы. Так, у фирмы Siemens в корпусе SOT-23 (аналог КТ-46) с маркировкой 1А выпускают- ся транзисторы ВС846А и SMBT3904, естественно, с разными электрическими параметрами. Различить такие совпадения может только опытный человек по окружающим компонентам обвески и схеме включения.

К сожалению, иногда путаница наблюдается и с цоколевкой выводов элемен­тов в одинаковых SMD-корпусах, выпускающихся разными фирмами. Это про­исходит из-за неоправданно большого количества действующих стандартов, регламентирующих требования к таким корпусам.

Практически каждая зару­бежная фирма-производитель работает по своим стандартам. Это происходит потому, что органы стандартизации не поспевают за разработками производи­телей. Однако есть тенденция к единой стандартизации корпусов и обозначе­ний элементов для поверхностного монтажа.

Таблица условных обозначений (маркировки) на корпусах SMD транзисторов для поверхностного монтажа, их тип и аналоги.

А пока встречаются элементы, корпус которых имеет стандартные размеры, но нестандартное название. Корпуса с одним и тем же названием могут иметь разную высоту. Она зависит от емкости и рабочего напряжения конденсаторов и величины рассеиваемой мощности резисторов.

Маркировка года и месяца изготовления

В соответствии с ГОСТ 25486-82, для обозначения даты используют две буквы или букву и цифру. Первый символ соответствует году, а второй — месяцу. Такой вид кодирования применяется не только для транзисторов, но и для других отечественных полупроводниковых элементов. На зарубежных приборах дата обозначается четырьмя цифрами, первые две из которых соответствуют году, а последние — номеру недели. Рассмотрим, что означает кодовая маркировка транзисторов, соответствующая дате изготовления. Год выпуска/символ: 1986 – U, 1987 – V, 1988 – W, 1989 – X, 1990 – А, 1991 – В, 1992 – С, 1993 – D, 1994 – Е, 1995 – F, 1996 – Н, 1997 – I, 1998 – К, 1999 – L, 2000 – М и т. Месяц выпуска: первые девять месяцев соответствуют цифрам от 1 до 9 (январь – 1, февраль – 2), а последние — начальным буквам слова: октябрь – О, ноябрь – N, декабрь – D.

Определение транзисторов по маркировке

Что дает применение

При использовании SMD компонентов не нужно сверлить отверстия в платах, формировать и обрезать выводы перед монтажом. Сокращается число технологических операций, уменьшается стоимость изделий. SMD компоненты меньше обычных, поэтому плата с такими элементами и устройство в целом будут более компактными. Мобильный телефон без SMD элементов не был бы в полном смысле мобильным.

SMD компоненты можно монтировать с обеих сторон платы, что еще больше увеличивает плотность монтажа. Устройство с SMD элементами будет иметь лучшие электрические характеристики за счет меньших паразитных емкостей и индуктивностей. Есть, конечно, и минусы. Для монтажа SMD компонентов нужно специальное оборудование и технологии. С другой стороны, монтаж электронных плат давно осуществляется автоматизированными комплексами. Чего только не придумает человек!

При ремонтных работах во многих случаях можно монтировать и демонтировать SMD компоненты. Однако и здесь не обойтись без вспомогательного оборудования. Припаять микросхему в BGA корпусе без паяльной станции невозможно!

Да и планарную микросхему с сотней выводов утомительно паять вручную. Разве только из любви к процессу. Предохранитель тоже могут иметь SMD исполнение. Такие штуки используют на материнских платах для защиты USB или PS/2 портов.

Сравнение с обычными элементами

Помните, мы с вами ремонтировали материнскую плату компьютера и меняли конденсаторы и полевые транзисторы? Это достаточно крупные элементы, на которых можно невооружённым взглядом прочесть маркировку. Конденсаторы в низковольтном стабилизаторе напряжения ядра процессора на материнской плате нельзя сделать очень маленькими. Для должной фильтрации пульсаций они должны обладать емкостью в несколько сотен микрофарад. Такую емкость не втиснешь в маленький объем.

Полевые транзисторы в этом стабилизаторе тоже нельзя сделать очень маленькими. Через них протекают токи в десятки ампер. Используются полевые транзисторы с очень небольшим сопротивлением открытого канала — десятые и сотые доли Ома. Но при таких токах они могут рассеивать мощность в половину Ватта и больше. Протекание тока по открытому каналу вызывает нагрев транзистора. Тепло при этом излучается в окружающее пространство через площадь корпуса транзистора. Если корпус будет очень маленьким, транзистор не сможет рассеять тепло и сгорит.

https://youtube.com/watch?v=C3t3-0QrJh4%3Ffeature%3Doembed

Кстати, обратите внимание: полевые транзисторы припаяны корпусом к площадкам печатной платы. Медные площадки хорошо проводят тепло, поэтому теплоотвод получается более эффективным. Но есть на той же материнской плате компоненты, по которым не протекают большие токи, и они не рассеивает большой мощности. Поэтому их можно сделать очень небольшими. Если мы заглянем внутрь компьютерного блока питания, то увидим там очень небольшие по размерам конденсаторы и резисторы. Они используют в цепях управления и обратной связи.

Полезный материал: что такое полупроводниковый диод.

Такие элементы выглядят как цилиндрик или кирпичик с тонкими проволочными выводами. Монтаж этих компонентов ведется традиционным способом: через отверстия в плате элемент припаивается выводами к контактным площадкам платы. Это технология была освоена десятки лет назад

е недостаток в том, что в плате нужно сверлить десятки или сотни отверстий. Это не самая простая технологическая операция. Чтобы избавиться от сверления (или уменьшить число отверстий) и уменьшить размеры готовых изделий, и придумали SMD компоненты. Материнские платы компьютеров содержат как обычные элементы с проволочными выводами, так и SMD компонентов. Последних – больше.

Интересно отметить, что надежность пайки бессвинцового припоя ниже, чем припоев, содержащих свинец. Поэтому директива RoHS не распространяется, в частности, на военные изделия и активные имплантируемые медицинские устройства. SMD диоды и стабилитроны выглядят как кирпичики с очень короткими выводами (0,5 мм и меньше), либо как цилиндрики с металлизированными торцами. SMD транзисторы бывают в корпусах различных размеров и конфигураций.

Широко распространены, например, корпуса SOT23 и DPAK. Выводы могут располагаться с одной или двух сторон корпуса. Микросхемы для поверхностного монтажа можно условно разделить на два больших класса. У первого выводы располагаются по сторонам корпуса параллельно поверхности платы. Такие корпуса называются планарными. Выводы могут быть с двух длинных или со всех четырех сторон. У микросхем другого класса выводы делаются в виде полушаров снизу корпуса.

Самая распространенная модель транзистора.

Как правило, в таких корпусах делают большие микросхемы (чипсет) на материнских платах компьютеров или видеокартах. Интересно отметить, что на традиционные элементы вначале наносилась цифровая маркировка. На резисторах, например, наносили тип, номинальное значение сопротивления и отклонение.

Затем стали использовать маркировку в виде цветных колец или точек. Это позволяло маркировать самые мелкие элементы. В SMD элементах используются буквенно-цифровая (там, где позволяет типоразмер) и цветовая маркировка.

Материал по теме: Как подключить конденсатор

SMD маркировка электрических элементов

Главная задача маркировки заключается в том, чтобы в зашифрованном (и сжатом!) виде отобразить на детали основную информацию о ней.

Количество выводовМаркировка корпуса по возрастанию размераКраткое описаниеДвухконтактныеSOD (например, SOD128, SOD323 и т. ) или WLCSP2Пассивные чипы цилиндрической или квадратной формы, танталовые конденсаторы, диодыТрехконтактныеDPAK, D2PAK, D3PAKАвтор данного корпуса — компания Моторола. Все элементы имеют одинаковую форму, но разный размер. Используются для полупроводниковых элементов, выделяющих тепловую энергиюЧетырехконтактные и болееWLCSP(N) (литера N обозначает число выводов), SOT, SOIC, SSOP, CLCC, LQFP, DFN,DIP / DIL,Flat Pack,TSOP,ZIPКонтакты этих чипов размещены по двум противоположным боковым сторонам корпусаЭлементы с числом контактов более четырехLCC, PLCC, QFN, QFP, QUIPВыводы расположены по всем четырем сторонам корпусаВыводы размещены в виде решеткиBGA, uBGAМикросхемы, предназначенные для пайки с помощью специальной пастыБезвыводные элементыμBGA, LFBGAОснащены только контактными пластинками или каплями припоя

Интересно! В промышленных масштабах в формате SMD выпускаются практически все типы радиодеталей, используемых в радиоэлектронике — это резисторы, диоды, конденсаторы и прочие компоненты. Важным элементом является SMD-стабилитрон, который применяется в БП, контроллерах и других электроустройствах.

SMD маркировка конденсаторов

Конденсаторы бывают нескольких разновидностей:

  • электролитические;
  • керамические
  • твердотельные (танталовые).

Обратите внимание: на маркировке электролитических конденсаторов по умолчанию указываются такие рабочие параметры, как фактическая емкость и допустимое напряжение, а вот на деталях из керамики — подобные обозначения отсутствуют.

SMD маркировка резисторов

При маркировке используются числовые и буквенные обозначения.

Две первые цифры в маркировке указывают на номинал, а третья (в некоторых случаях и четвертая) — обозначает количество нулей.

Чтобы разобраться в этом более подробно, давайте рассмотрим один из вариантов маркировки на конкретном примере.

Например, если маркировка резистора состоит из числа 322, значит, перед вами резистор, который имеет сопротивление 3200 Ом или 3,2 кОм. В данном случае третья цифра обозначает количество нулей. Если в маркировке присутствует буква R, то знайте: она выступает в роли разделителя. Например, когда резистор имеет маркировку 0R32, то его рабочее сопротивление составляет 0,32 кОм.

Обратите внимание: в современной радиоэлектронике встречаются особые резисторы, которые выполняют функции предохранителей. Так вот, у таких SMD компонентов, как правило, сопротивление равно нулю.

Транзисторы средней мощности, аналоги SS8050 и SS8550

Маркировка транзистора Код маркировки транзистора Структура транзистора Напряжение К-Э откр. Ток коллектора пост. Коэффициент передачи при Iк 2 мА и Uкэ 5В fгр (МГц) Корпус PDF СкладЗаказ HE8550LD-AB3-R—p-n-p25 В1500 мА85 — 500200SOT 89HE8050GD-AB3-R—n-p-n25 В1500 мА85 — 500100SOT 89

Как вам статья?

Бакалавр «210400 Радиотехника» – ТУСУР. Томский государственный университет систем управления и радиоэлектроники

Пишите свои рекомендации и задавайте вопросы

Маркировка советских резисторов

Первым делом давайте разберемся с советскими резисторами.

Определение транзисторов по маркировке

Хоть ты что делай, а от советской электроники не убежишь. Поэтому,  немного теории вам не повредит.

Первым взглядом мы должны оценить, какую максимальную мощность может рассеивать резистор. Сверху вниз, внизу на фото, резисторы по мощностям: 2 Ватта, 1 Ватт, 0. 5 Ватт, 0. 25 Ватт, 0. 125 Ватт. На резисторах мощностью 1 и 2 Ватта пишут МЛТ-1 и МЛТ-2 соответственно.

Определение транзисторов по маркировке

МЛТ — это разновидность самых распространенных советских резисторов, от сокращенных названий Металлопленочный, Лакированный, Теплоустойчивый. У других же резисторов мощность можно прикинуть по габаритам. Чем больше резистор по габаритам, тем больше мощности он может рассеять в окружающее пространство.

Единицы измерения в МЛТэшках  — Омы —  обозначают как R или E. Килоомы — буковкой «К», Мегаомы буковкой «М». Здесь все просто. Например, 33Е (33 Ома); 33R (33 Ома); 47К (47 кОм); 510К (510 кОм); 1. 0М (1 МОм). Есть также фишка такая, что буквы могут опережать цифры, например, K47 означает, что сопротивление равно 470 Ом, M56 — 560 Килоом. А иногда, чтобы не заморачиваться с запятыми, тупо толкают туда буковку, например. 4K3 = 4. 3 Килоом, 1М2 — 1. 2 Мегаома.

Давайте рассмотрим нашего героя. Смотрим сразу на обозначение. 1К0 или словами » один ка ноль». Значит, его сопротивление должно быть 1,0 Килоом.

Определение транзисторов по маркировке

Давайте убедимся, так ли это на самом деле?

Определение транзисторов по маркировке

Ну да, все сходится с небольшой погрешностью.

Японская система JIS

Данная система состоит из символов и содержит в себе пять элементов. Первая цифра соответствует типу полупроводникового прибора: 0 – фотодиод или фототранзистор; 1 – диод; 2 – транзистор. Второй элемент – буква S, она ставится на всех элементах. Следующая буква соответствует типу транзистора: А – высокочастотный PNP; В – низкочастотный PNP; С — высокочастотный NPN; D — низкочастотный NPN; Н – однопереходной; J — полевой с N-каналом; К — полевой с P-каналом. Далее следует серийный номер продукта (10 – 9999). Последний, пятый, элемент — это модификация прибора (зачастую он может отсутствовать). Иногда наносится и шестой символ – это дополнительный индекс (литеры N, M или S), означающий требование соответствия специальным стандартам. В японской системе цветовая маркировка транзисторов не применяется.

Определение транзисторов по маркировке

Форма и размеры SMD компонентов

Размеры деталей устанавливаются принятым за основу стандартом и напрямую связаны с маркировкой. Например, если речь идет об SMD компонентах (диодах, резисторах или конденсаторах) типоразмера 0805, то такие детали будут иметь следующие размеры:  0,6 × 0,8 × 0,23 дюйма (длина-ширина-высота).

Форма и габариты корпусов, в которые помещены дроссели и катушки индуктивности чаще всего такие же, как у резисторов или конденсаторов.

Условное обозначение представляет собой стандартную комбинацию из 4 цифр. Две первые цифры обозначают длину детали, две последние — ширину. Например, если вам попадется в руки дроссель с маркировкой 0805, то его габариты будут следующие: длина — 0,08 дюйма, ширина — 0,05 дюйма.

SMD диоды изготавливаются в двух вариациях: это могут быть детали бочкообразной формы или в виде параллелепипеда.

Обратите внимание: чтобы не допустить ошибку при установке SMD диода, рядом с минусовым контактом (в некоторых случаях — прямо на нем) присутствует полоска.

На поверхности SMD компонентов указывается кодовое значение, которое не предоставляет подробной информации о рабочих параметрах детали. Но вы всегда можете найти интересующую вас информацию в специальных электронных справочниках datasheet.

Используются корпуса двух типов:

  • SOT;
  • DPAK.

Стандарты маркировки, выработанные в Японии представлены буквами и цифрами в количестве 5 штук:

  • Цифра под номером 1 – тип полупроводникового транзистора: 0 – обозначение фотодиода или фототранзистора; 1 – обозначение диода; 2 – обозначение транзистора;
  • Буквенный символ S проставляется на каждом выпущенном элементе;
  • Третий по счету маркировочный элемент говорит о разновидности детали: А – PNP с высокой частотностью; В – PNP с низкой частотностью; С — NPN с высоким уровнем частотности; D — NPN с низким уровнем частотности; Н – однопереходной; J — транзистор полевого типа с N-каналом; К — транзистор полевого типа с P-каналом;
  • Цифра под номер 4 – номер серии в диапазоне от 10 до 9999;
  • Пятый символ маркировки обозначает модификацию. Иногда данный символ отсутствует.

Бывают ситуации, когда в кодировке присутствует 6 символ – это дополнительная литера N, M или S, которая отвечает за соответствие прибора определенным стандартам. Маркировка, разработанная в Японии, не предусматривает использование обозначений цветом.

Определение транзисторов по маркировке

Американская система JEDEC

Американские производители полупроводниковых приборов используют символьную кодировку, состоящую из четырех элементов. Первая цифра означает число п-н переходов: 1 – диод; 2 – транзистор;3 – тиристор; 4 – оптопара. Вторая буква обозначает группу. Третий знак — это серийный номер элемента (диапазон от 100 до 9999). Четвертый символ — буква, соответствующая модификации прибора.

Цветовая маркировка транзисторов

В данной маркировке используют цветные точки для кодирования параметров транзисторов в корпусах КТ-26 (ТО-92) и КТП-4. При полной цветовой маркировке кодирование типономинала, группы и даты выпуска наносится на срезе боковой поверхности согласно принятой цветовой гамме. Точку, обозначающую типономинал наносят в левом верхнем углу.

Она является началом отсчета. Далее, по часовой стрелке наносятся три точки, означающие группу, год и месяц выпуска соответственно. При сокращении цветовой маркировке дату выпуска опускают (указывается на вкладыше упаковки). Типономинал указывается на срезе боковой поверхности корпуса. Группа указывается на торце корпуса.

Создание устройства

Разработчики полупроводников часто совмещают взаимоисключающие идеи. Например, задают уменьшенные размеры и увеличенные скорости при жестких требованиях к прочности и стабильности системы, расширяют функционал при минимальных системных изменениях, стараются соблюсти баланс между высоким качеством и наименьшими затратами. Все это сочетается в самом распространенном корпусе транзистора SOT23.

Но мгновенного успеха не бывает. К тому же, поверхностный монтаж был, по большому счету, не актуален до 1990-х годов, когда потребительская электроника стала использоваться повсюду. Именно рассматриваемый корпус в те годы был взят за стандарт 3-выводных корпусов поверхностного монтажа. Сегодня почти всю электронику выпускают именно по этой технологии. Корпуса, которые устанавливают в отверстие, популярны. Чаще всего они применяются в разработке макетов и продукции.

Более современные варианты

Корпус SOT23 оставался внешне неизменным в течение нескольких десятков лет, на самом деле, он серьезно совершенствовался:

  • был добавлен 5-контактный вариант;
  • появилась бессвинцовая версия;
  • был расширен спектр допустимых температур до 175 градусов.

Сегодня устройство также развивается. Когда понадобилась более высокая плотность монтажа, появилось много “потомков” устройства. Самые популярные из них — SOT223 и SOT323. Взгляните на какой угодно корпус типа SOT для монтажа на поверхности, и заметите очень много общего с SOT23.

Так как эффективность и качество постоянно должны повышаться, появляются технологические инновации. Они актуальны для выпуска и сборки приборов для монтажа на поверхности — smd. Новые способы и линии производства отвечают постоянно растущему спросу на SOT23 и “дочерние” приборы.

Определение транзисторов по маркировке

Помимо классических радиодеталей с «ножками» (или выводами), которые широко используются в профессиональной и любительской радиоэлектронике, существует также отдельная группа радиодеталей — так называемые SMD компоненты.

Они применяются для быстрой сборки плат в промышленных масштабах с помощью робототехники.

В бытовых условиях SMD компонентов тоже могут использоваться.

Детальки отличаются небольшими габаритами и малым весом, что позволяет «клепать» платы более компактной формы. Уменьшается при этом и стоимость готовой сборки.

Впрочем, главным преимуществом использования SMD компонентов считается не то, что они делают плату меньше и легче. Сами детали за счет своей компактности создают меньшее количество «паразитных явлений».

К примеру, самый обычный резистор на плате наряду с активным сопротивлением обладает и «побочными эффектами» в виде паразитной индуктивности. «Побочки» в некоторых ситуациях могут привести к сбою в работе схемы.

А вот при использовании SMD-компонентов вероятность возникновения паразитной индуктивности и прочих «побочных явлений» намного меньше. Более того — становится заметно лучше «поведение» самой схемы. Причем как на высоких частотах, так и при слабых сигналах.

Символьно — цветовая маркировка транзисторов

Отличительная особенность данной маркировки – отсутствие цифр и букв. Типономинал транзистора обозначается на срезе боковой поверхности специальными символом (точки, горизонтальные, вертикальные или пунктирные линии) или цветной геометрической фигурой (круг, полукруг, квадрат, треугольник, ромб и др.

Маркировка группы относится одной (несколькими) точками на торце корпуса (КТ-26, КТП-4). Цветовая гамма точек, обозначающих группу при данной маркировке, не совпадает со стандартной цветовой гаммой по ГОСТ 24709-81. Она определяется производителем. Символ круга на боковом срезе транзистора необходимо отличать от точки, которая не имеет четкой формы, т. наносится кистью.

Маркировка по моделям транзисторов.

Применение транзисторов

Наряду с такой системой продолжает действовать и прежняя система обозначения, например П27, П401, П213, МП39 и т. Объясняется это тем, что такие или подобные транзисторы были разработаны до введения современной маркировки полупроводниковых приборов. Маломощный низкочастотный транзистор ГТ109 (структуры р — n — р) имеет в диаметре всего 3, 4 мм.

Транзисторы этой серии предназначены для миниатюрных радиовещательных приемников. Их используют также в слуховых аппаратах, в электронных медицинских приборах т. Диаметр транзисторов ГТ309 (р — n — р) 7,4 мм. Такие транзисторы применяют в различных малогабаритных электронных устройствах для усиления и генерирования колебаний высокой частоты.

Различие маркировок – в осуществлении дополнительной цветовой покраски торца корпуса полупроводника или же конструктивным исполнением корпуса. Абсолютное  и урезанное обозначение транзисторов имеющих среднюю и малую мощность осуществляется с помощью цветных точек (двух или же четырех), или с помощью кодовых знаков в виде геометрических фигур (кодов). При полной маркировке на корпус полупроводника наносится тип, группа дата выпуска.

Транзисторы КТЗ15 (n — p — n) выпускают в пластмассовых корпусах. Эти маломощные приборы предназначены для усиления и генерирования колебаний высокой частоты. Транзисторы МП39 — МП42 (р — n — р) — самые массовые среди маломощных низкочастотных транзисторов. Точно так выглядят и аналогичные им, но структуры n — p — n, транзисторы МП35 — МП38. Диаметр корпуса любого из этих транзисторов 11,5 мм. Наиболее широко их используют в усилителях звуковой частоты.

Так выглядят и маломощные высокочастотные р — n — р транзисторы серий П401 — П403, П416, П423, используемые для усиления высокочастотных сигналов как в промышленных, так и любительских радиовещательных приемниках. Транзистор ГТ402 (р — n — р) — представитель низкочастотных транзисторов средней мощности. Такую же конструкцию имеет его «близнец» ГТ404, но он структуры (n — p — n). Их, обычно используют в паре, в каскадах усиления мощности колебаний звуковой частоты.

https://www.youtube.com/watch?v=JVnRN-fNhxE

КТ904 — сверхвысокочастотный кремниевый n — p — n транзистор большой мощности. Корпус металлокерамический с жесткими выводами и винтом М5, с помощью которого транзистор крепят на теплопроводящем радиаторе. Функцию радиатора может выполнять массивная металлическая пластина или металлическое шасси радиотехнического устройства. Высота транзистора вместе с выводами и крепежным винтом чуть больше 20 мм. Транзисторы этой серии предназначаются для генераторов и усилителей мощности радиоаппаратуры, работающей на частотах выше 100 МГц, например диапазона УКВ.

Маркировка транзистора цветовыми обозначениями.

Схемы включения и основные параметры биполярных транзисторов

Итак, биполярный транзистор, независимо от его структуры, является трехэлектродным прибором. Его электроды — эмиттер, коллектор и база. Для использования транзистора в качестве усилителя напряжения, тока или мощности входной сигнал, который надо усилить, можно подавать на два каких — либо электрода и с двух электродов снимать усиленный сигнал. При этом один из электродов обязательно будет общим. Он — то и определяет название способа включения транзистора: по схеме общего эмиттера (ОЭ), по схеме общего коллектора (ОК), по схеме общей базы (ОБ).

Включение p-n-р транзистора по схеме ОЭ

Определение транзисторов по маркировке

Напряжение источника питания на коллекторе V подается через резистор Rк, являющийся нагрузкой, на эмиттер.

Это выполняется через общий «заземленный» проводник, обозначаемый на схемах специальным знаком.

Входной сигнал через конденсатор связи Ссв. подается к выводам базы и эмиттера, т. к участку база — эмиттер, а усиленный сигнал снимается с выводов эмиттера и коллектора.

Эмиттер, следовательно, при таком включении является общим для входной и выходной цепей. Транзистор, по схеме с ОЭ, в зависимости от его усилительных свойств может дать 10 — 200 — кратное усиление сигнала по напряжению и 20 — 100 — кратное усиление сигнала по току.

Такой способ включения по схеме с ОЭ пользуется у радиолюбителей наибольшей популярностью.

Существенным недостатком усилительного каскада, включенном по такой схеме, является его сравнительно малое входное сопротивление — всего 500-1000 Ом.

Что усложняет согласование усилительных каскадов, транзисторы которых включают по такой же схеме.

Объясняется это тем, что в данном случае эмиттерный р — n переход транзистора включен в прямом, т. пропускном, направлении. А сопротивление пропускного перехода, зависящее от прикладываемого к нему напряжения, всегда мало. Что же касается выходного сопротивления такого каскада, то оно достаточно большое (2-20 кОм) и зависит от сопротивления нагрузки Rк и усилительных свойств.

Интересный материал для ознакомления: что нужно знать об устройстве силового трансформатора.

Включение прибора схеме ОК

Входной сигнал подается на базу и эмиттер через эмиттерный резистор Rэ, который является частью коллекторной цепи. С этого же резистора, выполняющего функцию нагрузки транзистора, снимается и выходной сигнал. Таким образом, этот участок коллекторной цепи является общим для входной и выходной цепей, поэтому и название способа включения транзистора — ОК.

Каскад с полупроводником, включенным по такой схеме, по напряжению дает усиление меньше единицы. Усиление же по току получается примерно такое же, как если бы транзистор был включен по схеме ОЭ. Но зато входное сопротивление такого каскада может составлять 10 — 500 кОм, что хорошо согласуется с большим выходным сопротивлением каскада на транзисторе, включенном по схеме ОЭ.

https://youtube.com/watch?v=Gt8uq-5hw_w%3Ffeature%3Doembed

По существу, каскад не дает усиления по напряжению, а лишь как бы повторяет подведенный к нему сигнал. Поэтому транзисторы, включаемые по такой схеме, называют также эмиттерными повторителями. Почему эмиттерными?

Потому что выходное напряжение на эмиттере практически полностью повторяет входное напряжение. Почему каскад не усиливает напряжение? Давайте мысленно соединим резистором цепь базы с нижним (по схеме) выводом эмиттерного резистора Rэ, как показано на (рис. 5, б) штриховыми линиями.

Этот резистор — эквивалент внутреннего сопротивления источника входного сигнала Rвх. , например микрофона или звукоснимателя. Таким образом, эмиттерная цепь оказывается связанной через резистор Rвх. с базой. Когда на вход усилителя подается напряжение сигнала, на резисторе Rэ, являющемся нагрузкой транзистора.

Выделяется напряжение усиленного сигнала, которое через резистор Rвх. оказывается приложенным к базе в противофазе. При этом между эмиттерной и базовой цепями возникает очень сильная отрицательная обратная связь, сводящая на нет усиление каскада. Это по напряжению. А по току усиления получается такое же, как и при включении транзистора по схеме с ОЭ.

Включение транзистора по схеме с ОБ

В этом случае база через конденсатор Сб по переменному току заземлена, т. соединена с общим проводником питания. Входной сигнал через конденсатор Ссв. подают на эмиттер и базу, а усиленный сигнал снимают с коллектора и с заземленной базы. База, таким образом, является общим электродом входной и выходной цепей каскада.

Такой каскад дает усиление по току меньше единицы, а по напряжению — такое же, как транзистор, включенный по схеме с ОЭ (10 — 200). Из — за очень малого входного сопротивления, БК превышающего нескольких десятковом (30-100) Ом, включение транзистора по схеме ОБ используют главным образом в генераторах электрических колебаний, в сверхгенеративных каскадах, применяемых, например, в аппаратуре радиоуправления моделями.

Чаще всего как я уже говорил применяются схемы с включением транзистора с ОЭ, реже с ОК. Но это только способы включения. А режим работы транзистора как усилителя определяется напряжениями на его электродах, токами в его цепях и, конечно, параметрами самого транзистора. Качество и усилительные свойства биполярных транзисторов оценивают по нескольким электрическим параметрам, которые измеряют с помощью специальных приборов.

Вас же, с практической точки зрения, в первую очередь должны интересовать три основных параметра: обратный ток коллектора Iкбо, статический коэффициент передачи тока h213 (читают так: аш два один э) и граничная частота коэффициента передачи тока Fгр.

Транзисторы в корпусе типа КТ-26

Определение транзисторов по маркировке

Рассмотрим, что означает маркировка транзисторов отечественного производства. Данный тип корпуса наиболее популярен среди производителей полупроводниковых приборов. Он имеет форму цилиндра с одной скошенной стороной, три вывода выходят из нижнего основания. В данном случае используют принцип смешанной маркировки, содержащий и кодовые символы, и цветовые. На верхнее основание наносят цветную точку, означающую группу транзистора, а на скошенную сторону — кодовый символ или цветную точку, соответствующие типу прибора. Кроме типа, могут наноситься год и месяц выпуска.

Для обозначения группы используется следующая цветная маркировка транзисторов: группе А соответствует темно-красная точка, Б – желтая, В – темно-зеленая, Г – голубая, Д – синяя, Е – белая, Ж – темно-коричневая, И – серебристая, К – оранжевая, Л – светло-табачная, М – серая.

Тип обозначают посредством указанных ниже символов и красок.

Маркировка SMD диодов, справочник кодовых обозначений

Такие базы данных будут полезны и обычным радиолюбителям, которые занимаются пайкой плат и прочими операциями с радиодеталями.

К примеру, используя электронный справочник, удобно не только расшифровывать маркировку, но и подбирать аналоги той или иной детали. Это может быть нужно при замене обычного диода на SMD диод с целью снижения себестоимости платы и улучшения работы схемы.

Для удобства все SMD диоды и остальные компоненты, которые собраны в электронных базах, разбиты на отдельные подгруппы, что существенно облегчает поиск.

Расшифровка SMD параметров. (для транзисторов )

В описании приведены только параметры транзисторов SMD формата. Для конденсаторов этого типа существуют отдельные обозначения. Например для измерения емкости SMD конденсатора пользуются очень малыми емкостями.

Нам так же требуется знать про существование таких понятий,
которые приводятся в этих таблицах Такие понятия как:

-IGSS gate -to source leakage reverse-ток утечки затвора в маленьких
транзисторах.

-IDSS-ток
утечки стока.

-IAR — обозначение l(max) на
стоке.

-EAR- самая большая энергия импульса на стоке.

-Tj-номинальная рабочая температура транзистора.

— td (on)-время открытия затвора.

— tr — время напоминания импульса.

— td (off)- время закрытия затвора

— tf — время за которое затухает импульс

— Ciss-емкость затвора на входе.

— Coss-выходная емкость затвор-исток и исток-сток

— VSD (diode forward voltage) — падение напряжения на диоде между истоком и стоком.

— trr reverse recovery time-время обратного восстановления диода наносекунд

-Qg total gate charge- это некоторое количество энергии , в которой нуждается затвор
транзистора для его открытия.

-Qgs-заряд
емкости затвор-исток. Обозначение объема заряда между затвором и истоком.

-Qgd-
величина заряда между затвором и стоком, которую называют в учебниках ёмкостью
Миллера.

-EAS-
это обозначение максимальной энергии одного импульса частоты на стоке транзистора.

Как проверить транзистор мультиметром из предложения TME

При использовании каталога TME в товарной категории «переносные цифровые мультиметры» стоит использовать фильтр «тестирование транзистора». При этом мы получаем список моделей, которые позволяют тестировать транзистор, как с использованием классических щупов, так и с использованием специальных гнезд для контактов транзисторов pnp и npn. Интересующиеся найдут здесь продукцию таких марок, как, например, Peaktech, B&K Precision, Axiomet и Uni-T. Все выбранные модели представляют собой компактные устройства, оснащенные жидкокристаллическими дисплеями с подсветкой, несколькими гнездами и понятной ручкой выбора режима работы. Большинство из них также имеют защитные корпуса из прочных и поглощающих удары пластиков для увеличения срока их службы.

Согласно функционалу, принцип работы рассматриваемых регуляторов аналогичен микросхемам ШИМ xx384x, устойчивым и надежным.

С заменой или выбором аналогов таких регуляторов часто возникают трудности из-за кодировки при обозначении видов микросхем. К тому же, существует много фирм-производителей элементов, которые не выкладывают документацию в открытый доступ. Дело в том, что не каждый изготовитель приборов предоставляет схемы в сервису по ремонту. Так что ремонтники вынуждены осваивать возможные варианты схем по имеющимся компонентам и монтажу именно на плате.

В практическом применении обычно используются ШИМ-микросхемы с кодировкой EAxxx. Вы не найдете официальных документов к ним, но есть картинки из PDF от System General.

Определение транзисторов по маркировке

Взгляните на таблицу, по которым можно подобрать аналоги с соответствующей выводной цоколевкой. Они отличаются применением 3-го вывода.

ШИМ-регуляторы (PWM), где по-другому используется вывод 3, таблица:

Определение транзисторов по маркировке

При применении всех указанных ШИМ, присмотритесь к выводу 3. С его помощью можно обеспечить тепловую защиту и избежать увеличения напряжения на входе. Допускается фиксированная или регулируемая конденсатором частота.

SMD транзисторы

Данные детали маркируются только символами. Маркировка цветом не используется по той причине, что размер элемента слишком мал. Для них также не предусмотрено единых стандартов кодирования: все происходит на усмотрение завода-производителя. Как правило, код, состоящий из цифр и букв, может быть составлен из 3 символов. Примеры маркировки SMD транзисторов в корпусу SOT-23

Особенности маркировки SMD транзисторов

Чаще всего при маркировке SMD компонентов (например, транзисторов) используются американские стандарты (принятая аббревиатура — JEDEC), согласно которым допускается условные обозначения в следующем порядке:

  • 1 — число p-n переходов;
  • 2 – номинал;
  • 3 — серийный номер детали.

В некоторых случаях допускается наличие еще одного условного обозначения, которое идет четвертым по счету и обозначает модификацию.

Также широкой популярностью пользуется маркировка по евростандарту.

В данном случае на первом месте у нас будет находиться уже тип материала, на втором — подкласс, а на третьем обычно идет область применения. Оставшиеся два обозначения, занимающие соответственно 4 и 5 позицию, отвечают за спецификацию.

Допускается маркировка деталей и по японским стандартам. По сути, это универсальный вариант, который сочетает в себе евростандарт и JEDEC.

Так, на первом месте стоит класс, на втором — присутствует буква S (если деталь является полупроводником), на третьем — область применения, а на четвертом — указывается регистрационный номер. Дополнительно в японской маркировке имеются еще две позиции, располагающиеся на 5 и 6 местах, которые обозначают индекс модификации и стандарт.

Проверка транзисторов с помощью тестеров электронных элементов

Многофункциональные тестеры электронных элементов – это небольшие устройства, напоминающие классические мультиметры, но их областью применения является испытание транзисторов, резисторов, конденсаторов, диодов и многих других элементов, используемых в обычной электронике. Они могут измерять напряжение, сопротивление и некоторые другие параметры, а также отображать измеренные параметры на своих дисплеях. Обычно они питаются от батареи (чаще всего 9 В или 12 В), отличаются высокой автоматизацией работы, имеют специальные гнезда для подключения на передней панели, что делает их очень удобными в использовании. В некоторых вместо гнезд для ножек испытуемых элементов имеются классические щупы, но даже в этом случае все происходит автоматически. Достаточно приложить произвольный щуп к произвольной ножке и тестер автоматически идентифицирует все контакты, распознает тип полупроводникового перехода, определит тип транзистора и выполнит тестирование напряжения проводимости, напряжения отсечки (для транзисторов MOSFET), тока утечки, порогового напряжения, сопротивления или измерит коэффициент усиления по току.

Точку, обозначающую типономинал наносят в левом верхнем углу. Она является началом отсчета. Далее, по часовой стрелке наносятся три точки, означающие группу, год и месяц выпуска соответственно. При сокращении цветовой маркировке дату выпуска опускают (указывается на вкладыше упаковки). Типономинал указывается на срезе боковой поверхности корпуса. Группа указывается на торце корпуса.

Цветовая маркировка транзисторов.

Транзисторы в корпусе типа КТ-27

На эти полупроводниковые элементы принято наносить либо буквенно-цифровой код, либо шифр, состоящий из геометрических фигур. Рассмотрим, что означает графическая маркировка транзисторов.

  • КТ972А – один «лежачий» прямоугольник.
  • КТ972Б – два прямоугольника: левый лежит, правый стоит.
  • КТ973А – один квадрат.
  • КТ973Б – два квадрата.
  • КТ646А – один треугольник.
  • КТ646Б – слева круг, справа треугольник.

Кроме того, существует и дополнительная цветовая маркировка торца корпуса, который противоположен выводам:

  • КТ 814 – серо-бежевый;
  • КТ 815 – сиренево-фиолетовый или серый;
  • КТ 816 – розово-красный;
  • КТ 817 – серо-зеленый;
  • КТ 683 – фиолетовый;
  • КТ9115 – голубой.

Транзисторы серии КТ814-817 группы Б могут маркироваться только путем окрашивания торца, без нанесения символьного кода.

Транзисторы MOSFET в корпусе SOT-23

Фирма IR расширяет номенклатуру MOSFET в разных направлениях. Главным является усовершенствование электро параметров транзисторов, а именно:

  • снижение канального сопротивления;
  • паразитного сопротивления;
  • выводной емкости и индуктивности;
  • увеличение рабочего тока;
  • увеличение рабочего напряжения;
  • увеличение скорости действия.

Повышается эффективность применения корпусов в готовых устройствах, обеспечиваются высокие удельные показатели тока и передающейся мощности.

Сначала не планировались мощные применения транзисторов в корпусе SOT-23, так как он не может рассеивать больше количество тепла. Но при сильном уменьшении открытого сопротивления ключа появилась возможность серьезно увеличить спектр токов коммутации.

Определение транзисторов по маркировке

Благодаря невысокой цене, данный вид корпуса представляет интерес для мобильного сектора, бюджетных преобразователей напряжения с невысокой мощностью.

К транзисторам предъявляются следующие требования:

  • Невысокое открытое сопротивление.
  • Стабильность температуры, если не используется радиатор.
  • Невысокий порог напряжения затвора.
  • Бюджетная стоимость.

У нового семейства p- и n- канальных транзисторов от IR стандартный корпус имеет очень низкое открытое сопротивление. Оно нужно для использования в зарядках для аккумуляторов, нагрузочных коммутаторах, электрических приводах, телекоммуникации, применения в различных видах приложений.

У нового семейства MOSFET спектр напряжений находится в пределах от -30 до 100 В, с разными значениями сопротивлений и емкостей. Это способствует широкому выбору при создании небольших, но качественных и доступных по стоимости вариантов.

Чем же транзисторы отличаются от предшественников? Это можно узнать при изучении технологии создания кристаллов для подобных корпусов.

Новые способы создания кристаллов помогли сделать транзистор более эффективным, по сравнению с конкурентами. Если сохраняются прежние размеры кристалла, выходят сниженные значения сопротивлений. В итоге достигаются наилучшие значения температуры для данного корпуса. IR производит транзисторы с корпусами SOT-23 и кристаллами, которые выпускаются по технологии Gen 10.

Характеристики современных транзисторов с корпусами SOT-23

Как мы уже указывали, главные преимущества новых устройств с корпусами SOT-23 — это наименьшие значения сопротивлений. Чтобы оценить новые приборы, учитываются лишь 2 показателя.

Канальное сопротивление транзистора сильно связано с напряжением в затворе и допустимой температурой. Это особенно важно для устройств с низким порогом напряжения.

На картинке изображена зависимость сопротивления открытого транзистора от напряжения затвора.

Определение транзисторов по маркировке

Если сравнить транзистор IRLML6344 с AO3400A, то выяснится, что его рабочая температура меньше, за счет лучшего значения теплового сопротивления.

Обозначения разных величин в корпусе транзисторов SOT-23

В наименовании MOSFET присутствует несколько величин:

  • управляющее напряжение затвора;
  • тип корпуса;
  • технология кристаллизации;
  • уровень напряжения стока и размера кристалла.

Например, вот как обозначается новый транзистор: IRLML6244TRPBF, где:

  • L — уровень управляющего напряжения.
  • F — возможность управлять логическим уровнем напряжения.
  • L — возможность управлять низким логическим уровнем сигнала.

Логическим уровнем называется состояние транзистора, когда он открыт при невысоком затворном напряжении 2,5 B.

Как собрать корпус SOT23 собственноручно

Приготовьте 3 куска монтажного провода подходящей длины, желательно, МГТФ. Из них получатся выводы корпуса.

Определение транзисторов по маркировке

Для защиты сделайте небольшую зачистку на пару миллиметров со стороны, которая припаивается к корпусу.

Замкните концы кусочков провода на участке, который впаивают в плату и зафиксируйте, чтобы уравнять потенциалы.

С помощью тонкого пинцета сделайте из пластика корпус, и зажмите его так:

Определение транзисторов по маркировке

Наденьте на паяльник так называемое игольчатое жало, оно, как правило, есть в паяльных станциях.

Установите на станции минимальную температуру, чтобы паять только припой. Ее можно определить только экспериментально.

Возьмите кусок провода в одну руку, паяльник — в другую. Можно паять стандартным припоем из свинца. Ни в коем случае нельзя перегревать контакты корпуса, а контакты паяльника — распаяйте и подпаяйте провода для выводов. Они должны быть уложены в виду пучка.

Определение транзисторов по маркировке

Припаивайте провода в определенном порядке, начиная с истока, и заканчивая затвором.

Не прикасайтесь к корпусу руками, трогать можно только паяльник и провода. При необходимости поправьте с помощью пинцета положение корпуса.

Готово! Вы не просто собрали корпус, а теперь он выводной. Его можно использовать, как все остальные транзисторы МОП.

На AliExpress  очень большой выбор транзисторов в корпусе SOT-23, можете по ссылке перейти и выбрать для себя нужный.

Кодовая и цветовая маркировка транзисторов, диодов и стабилитронов

Определение транзисторов по маркировке

В цветовой и кодовой маркировке транзисторов, также как и диодов и стабилитронов, нет единых стандартов. Каждый завод, который производит транзисторы, принимает свои цветовые и кодовые обозначения. Можно встретить транзисторы одного типа и группы, которые изготовлены разными заводами и маркируются по-разному. Или разные транзисторы, которые маркируются одинаково. В этом случае их можно отличить только по некоторым дополнительным признакам, таким как длина выводов коллектора и эмиттера или окраска торцевой (противоположной выводам) поверхности транзистора.

Цветовая маркировка транзисторов в корпусе КТ-26 осуществляется двумя точками. Тип транзистора обозначается на боковой поверхности, а маркировка группы на торцевой

Определение транзисторов по маркировке

Кодовая и цветовая маркировка транзисторов в корпусе КТ-26

Таблица1. Кодовая и цветовая маркировка транзисторов в корпусе КТ-26

Определение транзисторов по маркировке

Определение транзисторов по маркировке

Тип транзистора обозначается кодовым знаком (табл. 1), а группа соответствующей буквой. Дата изготовления в соответствии с ГОСТ 25486-82 кодируется двумя буквами или буквой и цифрой (табл.

Определение транзисторов по маркировке

Первая буква обозначает год выпуска, а следующая за ней цифра или буква – месяц. Кодированное обозначение даты изготовления применяется не только для транзисторов, но и для других радиоэлементов. Дата выпуска зарубежных радиоэлементов обозначается четырьмя цифрами, первые, две из которых обозначают год выпуска, а последние две – номер недели в году (например, 9432 обозначает – 1994 год, 32-я неделя года).

Определение транзисторов по маркировке

Определение транзисторов по маркировке

Транзисторы в корпусе КТ-27 могут маркироваться или буквенно-цифровым кодом (табл. 3) или кодом, состоящим из геометрических фигур

Определение транзисторов по маркировке

Определение транзисторов по маркировке

Маркировка транзисторов в корпусе КТ-27

Транзисторы в корпусе КТ-27 дополнительно маркируются окрашиванием торца корпуса, противоположного выводам

КТ814 – СЕРО-БЕЖЕВЫЙ

КТ815 – СЕРЫЙ ИЛИ СИРЕНЕВО – ФИОЛЕТОВЫЙ

КТ816 – РОЗОВО-КРАСНЫЙ

КТ817 – СЕРО-ЗЕЛЕНЫЫЙ

КТ683 – ФИОЛЕТОВЫЙ

КТ9115 – ГОЛУБОЙ

Транзисторы Кт814Б, КТ815Б, Кт816Б и Кт817Б иногда маркируются только окрашиванием торцевой поверхности без нанесения буквенно-цифрового кода.

Определение транзисторов по маркировке

Маркировка транзисторов в корпусе КТ-13

Тип транзисторов КП303 и КП307 в корпусе КТ-1-12 маркируется соответственно цифрами 3 и 7, группа – соответствующей буквой. Транзисторы КП327А маркируются одной белой точкой, а КП327Б – двумя.

Определение транзисторов по маркировке

Цветовая маркировка диодов и стабилитронов

Определение транзисторов по маркировке

Определение транзисторов по маркировке

Таблица5. Цветовая маркировка стабилитронов

Определение транзисторов по маркировке

Определение транзисторов по маркировке

* стабилитроны серии (группа Ж) с маркировкой 2С дополнительно помечаются голубой меткой на торце корпуса со стороны катода.

Согласно ГОСТ 25486-82, для того, чтобы обозначить месяц и год изготовления транзистора и других электронных компонентов, используются буквы и цифры: первое значение – год, второе значение – месяц. Что касается приборов, изготовленных за рубежом, для обозначения даты выпуска применяется кодировка из четырех цифр, где первые две – это год, следующие – номер модели.

Каждому году соответствует своя буква:

Чтобы обозначить месяц выпуска, применяются не только цифры, но и некоторые буквы: месяцы с января по сентябрь полностью соответствуют цифрам, следующие – первым буквам названия месяца.

Разновидности маркировок.

Производители до сих пор не разработали единого
стандарта маркирования транзисторов СМД.

Поэтому кодовая маркировка smd
транзисторов может осуществляться по трём системам.

О каждой из них надо
упомянуть поподробнее.

JEDEC — система маркировки полупроводниковых
элементов

Она состоит из трёх или четырёх элементов. Они
означают:

·        
первый количество п-н
переходов;

·        
второй — тип номинал;

·        
третий — серийный номер;

·        
четвёртый (при наличии)
модификацию устройства.

Европейская система маркировки SMD.

На корпусе транзистора прописываются три
элемента, каждый из которых несёт свою смысловую нагрузку:

·        
первый обозначает
разновидность исходного материала;

·        
второй обозначает подкласс
прибора;

·        
третий обозначает область
применения данного элемента;

·        
четвёртый и пятый основную
спецификацию.

Японская система.

В этой системе на корпус прибора наносятся шесть
элементов. Они обозначают:

·        
первый — класс прибора;

·        
второй — буква S, ставящаяся на все полупроводники;

·        
третий — тип устройства по
исполнению;

·        
четвёртый — номер
регистрационный;

·        
пятый — индекс модификации;

·        
шестой (не является
обязательным) — отношение к существующим стандартам.

Опознать
транзистор smd по маркировке — значит правильно начать работать с данной
деталью.

Определение транзисторов по маркировке

Оцените статью
Маркировка-Про