Расшифровка маркировки на керамическом конденсаторе. маркировка радиокомпонентов в цвете. Как работают электронные схемы?

Расшифровка маркировки на керамическом конденсаторе. маркировка радиокомпонентов в цвете. Как работают электронные схемы? Маркировка
Содержание
  1. Принцип работы конденсаторов
  2. Кодовая маркировка электролитических конденсаторов для поверхностного монтажа
  3. Маркировка 2 или 3 символами
  4. Маркировка 4 символами
  5. Маркировка в две строки
  6. Маркировка конденсаторов
  7. Какие параметры могут быть указаны в маркировке
  8. Немного о параметрах
  9. Строение и технология производства
  10. Формирование диэлектрика
  11. Твёрдотельный электролит
  12. Особенности катода танталового конденсатора
  13. ESR танталовых конденсаторов
  14. Универсальная таблица цветов
  15. Стандартные ряды номиналов
  16. Калькулятор буквенно-цифровой маркировки конденсаторов
  17. Определяем номинал, допуск и ТКЕ конденсатора
  18. Поиск кондесатора на сайте
  19. Как маркируются большие конденсаторы
  20. Маркировка отечественных конденсаторов
  21. Ёмкость
  22. Номинальное напряжение
  23. Дата выпуска
  24. Кодовая маркировка, дополнение
  25. Маркировка 3 цифрами
  26. Маркировка 4 цифрами
  27. Маркировка емкости в микрофарадах
  28. Смешанная буквенно-цифровая маркировка емкости, допуска, ТКЕ, рабочего напряжения
  29. Маркировка конденсаторов тремя цифрами
  30. Виды SMD-конденсаторов
  31. Условные обозначения конденсаторов
  32. Конденсатор с постоянной емкостью
  33. Код номера конденсатора
  34. Поляризованные конденсаторы
  35. Танталовые конденсаторы
  36. Переменные конденсаторы
  37. Конденсаторы-триммеры
  38. Виды и маркировка
  39. Физические величины, используемые в маркировке емкости керамических конденсаторов
  40. Как обозначаются танталовые конденсаторы?
  41. Пробои танталовых конденсаторов
  42. Маркировка электролитических SMD конденсаторов
  43. Как расшифровать маркировку конденсатора и узнать его ёмкость?
  44. Цифро-буквенное обозначение
  45. Цветовая кодировка керамических конденсаторов.
  46. Типы постоянных конденсаторов
  47. Три цифры
  48. Виды SMD конденсаторов
  49. Электролитические компоненты
  50. Керамические компоненты
  51. Маркировка танталовых SMD конденсаторов
  52. Маркировка конденсаторов импортного производства
  53. Цветовая маркировка импортных конденсаторов
  54. Зачем нужна маркировка?
  55. Конденсаторы постоянной емкости

Принцип работы конденсаторов

При подсоединении цепи к источнику электрического тока через конденсатор начинает течь электрический ток. В начале прохождения тока через конденсатор его сила имеет максимальное значение, а напряжение – минимальное. По мере накопления устройством заряда сила тока падает до полного исчезновения, а напряжение увеличивается.

В процессе накопления заряда электроны скапливаются на одной пластинке, а положительные ионы – на другой. Между пластинами заряд не перетекает из-за присутствия диэлектрика. Так устройство накапливает заряд. Это явление называется накоплением электрических зарядов, а конденсатор –накопителем электрического поля.

Кодовая маркировка электролитических конденсаторов для поверхностного монтажа

Для конденсаторов таких фирм как «Panasonic», «Hitachi» и др. маркировка осуществляется 3-мя основными способами:

Маркировка 2 или 3 символами

Код содержит два или три знака (буквы или цифры), обозначающие рабочее напряжение и номинальную емкость. Причем буквы обозначают напряжение и емкость, а цифра указывает множитель. В случае двухзначного обозначения не указывается код рабочего напряжения.

При такой маркировки код содержит 2 или 3 символа по ним можно узнать номинальную емкость и рабочее напряжение. Буквы означают напряжение и емкость, цифра показываем множитель. Если маркировка содержит 2 символа, то рабочее напряжение не указывается. Соответствие кода маркировки и значение емкости  можно посмотреть в таблице ниже:

Маркировка 4 символами

Код содержит четыре знака (буквы и цифры), обозначающие емкость и рабочее напряжение. Буква, стоящая вначале, обозначает рабочее напряжение, последующие знаки — номинальную емкость в пикофарадах (пФ), а последняя цифра — количество нулей.

Возможны 2 варианта кодировки емкости: а) первые две цифры указывают номинал в пикофарадах, третья — количество нулей; б) емкость указывают в микрофарадах, знак m выполняет функцию десятичной запятой. Ниже приведены примеры маркировки конденсаторов емкостью 4. 7 мкФ и рабочим напряжением 10 В.

Маркировка в две строки

Если величина корпуса позволяет, то код располагается в две строки: на верхней строке указывается номинал емкости, на второй строке — рабочее напряжение.

Емкость может указываться непосредственно в микрофарадах (мкФ) или в пикофарадах (пф) с указанием количества нулей (см. способ В). Например, первая строка — 15, вторая строка — 35V — означает, что конденсатор имеет емкость 15 мкФ и рабочее напряжение 35 В.

Маркировка конденсаторов

Конденсаторы цифровой, буквенно-цифровой и цветовой маркировкой. Цифровая маркировка используется на деталях малого размера. Это СМД тип, плёночные и полимерные. Три или четыре цифры указывают ёмкость. Если нужна иная информация, искать надо в справочниках или даташитах.

Расшифровка маркировки на керамическом конденсаторе. маркировка радиокомпонентов в цвете. Как работают электронные схемы?

Маркировка конденсаторов не стандартизована

На корпусах побольше могут быть указаны и другие важные параметры. Но их расположение и способ маркировки не стандартизирован. Например, в первой строчке может быть указан номинал. А может — отклонение или логотип/название фирмы. В первой строчке может стоять и номинальное напряжение и температурный коэффициент. Так что надо смотреть не только на цифры, но ещё и на единицы измерения.

Расшифровка маркировки на керамическом конденсаторе. маркировка радиокомпонентов в цвете. Как работают электронные схемы?

Параметры могут быть указаны в любом порядке

Какие параметры могут быть указаны в маркировке

Для конденсаторов важны три параметра:

  • ёмкость;
  • номинальное (рабочее) напряжение;
  • допуск по отклонению ёмкости.

С первыми двумя всё ясно. Вот только стоит заметить, что на некоторых конденсаторах номинальное напряжение может быть не указано. Если предполагается высокое напряжение, надо смотреть в данных производителя.

https://youtube.com/watch?v=WjvTiRHV8kk%3Ffeature%3Doembed

Немного о параметрах

Про два последних параметра (мощность и допуск) стоит сказать пару слов. Допуск в характеристиках конденсаторов — это допустимое/возможное отклонение ёмкости от указанного номинала. Есть виды с малым допуском — в несколько процентов, есть с больши́м — до 20%. Заменить конденсатор с малым допуском на аналог по ёмкости и напряжению, но более высоким допуском можно далеко не всегда. Такое допустимо только в бытовой технике. И то, только там, где величина заряда не слишком критична. Но лучше искать замену с аналогичным допуском.

Часто бывает так, что периодически «вылетает» конденсатор на одном и том же месте. По нашей логике хочется заменить его на элемент с больши́м напряжением. Но здесь может быть 2 варианта. Во-первых: в цепи имеют место скачки напряжения превышающие номинальное напряжение детали. Во-вторых, не учтена реактивная мощность конденсатора, если он работает в высокочастотных цепях.

По большей части параметр мощности не указывают и найти его можно в спецификации на деталь. Им обычно пользуются узкие специалисты.

Ещё может быть указан температурный коэффициент — ТКЕ, но он ставится далеко не во всех случаях. Он отображает изменение ёмкости в зависимости от температуры элемента. Обычно проставляется, если есть значительная зависимость. Если изменения незначительны, их просто опускают. Многие параметры легко узнавать имея тестер радиоэлементов.

Строение и технология производства

Тантал и алюминий – приоритетные металлы в производстве конденсаторов. Это объясняется возможностью регулировать толщину непроводящего оксидного слоя, что напрямую влияет на емкость. Сам конденсатор состоит из:

  • положительного (анод) и отрицательного (катод) электродов;
  • диэлектрика – оксидной пленки;
  • электролита – токопроводящей среды, в данном случае твердотельной.

Расшифровка маркировки на керамическом конденсаторе. маркировка радиокомпонентов в цвете. Как работают электронные схемы?

Отличие тантала от алюминия становится понятно, если разобраться в процессе формирования конденсатора. Первая особенность – анод. Спрессованный танталовый порошок нагревают в вакууме для получения характерной «губки».

Формирование диэлектрика

Диэлектрик получается в результате окисления – на поверхности образуется непроводящая пленка. На этом этапе проявляется преимущество металла: толщину слоя можно контролировать, меняя подаваемое напряжение.

Твёрдотельный электролит

Используется диоксид марганца. Технология производства следующая:

  • «Губка» с диэлектрическим танталовым слоем пропитывается марганцевыми солями.
  • Структуру подвергают термической обработке. Это нужно для формирования диоксида.

Процедуру повторяют несколько раз до полного покрытия поверхности электролитом.

Особенности катода танталового конденсатора

Внимания заслуживает и отрицательный электрод. Контакт электролита с катодом улучшают при помощи слоя графита, покрытого серебром. Поэтому сам тантал – не единственный редкий и дорогой материал в производстве.

ESR танталовых конденсаторов

Эквивалентное сопротивление (ESR) определяется по частотам:

  • низким – по сопротивлению пленки тантала;
  • высоким – диоксида марганца.

Сопротивление, а с ним и ESR, во втором случае уменьшается с повышением температуры.

Универсальная таблица цветов

Для детального изучения данной методики можно рассмотреть отечественный ГОСТ 175-72. По действующим правилам, каждому цвету соответствует определенная цифра. Серебристый и золотой – обозначают десятичные части.

С помощью универсальной таблицы выполняют расшифровку цветовых обозначений

На рисунке показан пример специализированной программы. С помощью подобных калькуляторов упрощается определение номинала. Расчет выполняется автоматически. Чтобы узнать значение в цифровой форме, достаточно сделать отметки в соответствии с расцветкой определенного радиокомпонента.

Стандартные ряды номиналов

Чтобы выбирать серийную продукцию без ошибок, следует напомнить о применении специальных обозначений рядов. Для Е12, например, разрешенное отклонение от номинала составляет не более 10% в сторону увеличения/ уменьшения. Стандартные значения (15; 18; 22 и другие) рассчитаны таким образом, чтобы при максимальной погрешности исключить ошибки. Разница между соседними позициями должна быть от 200% или более, по сравнению с установленным допуском.

Погрешности для других рядов «Е» приведены в следующем перечне (%):

К сведению. Изделия с минимальным отклонением от номинального значения электрического сопротивления маркируют тремя значащими кольцами (цифрами). Дополнительными полосами обозначают множитель и определенный допуск.

Калькулятор буквенно-цифровой маркировки конденсаторов

Конденсатор — это пассивный компонент электрической цепи, предназначенный для накопления электрической энергии, фильтрации или создания межкаскадной связи. Электрические характеристики конденсатора определяются его конструкцией и свойствами используемых материалов. Калькулятор поможет определить номинал конденсатора, при изготовлении которого использовались пленка, керамика, тантал или слюда.

Расшифровка маркировки на керамическом конденсаторе. маркировка радиокомпонентов в цвете. Как работают электронные схемы?

Расшифровка маркировки на керамическом конденсаторе. маркировка радиокомпонентов в цвете. Как работают электронные схемы?

Определяем номинал, допуск и ТКЕ конденсатора

Калькулятор вычисляет параметры по однострочной буквенно-цифровой маркировке
Таблица значений допуска при маркировке буквенными символами
Таблица значений температурного коэффициента емкости (ТКЕ)
Маркировка часто встречающихся значений ТКЕ

Введите код указанный на корпусе конденсатора, например: 22, 104, 221J, 4n7K. Вместо символа µ можно использовать m

Поиск кондесатора на сайте

Обнаружили ошибку или неточность в работе калькулятора? Сообщите нам об этом. Соблюдайте технику безопасности во время работы с электронными компонентами!

Как маркируются большие конденсаторы

Чтобы правильно прочитать технические характеристики устройства, необходимо провести определенную подготовку. Начинать изучение нужно с единиц измерения. Для определения емкости применяется специальная единица – фарад (Ф). Значение одного фарада для стандартной цепи представляется слишком большим, поэтому маркировка бытовых конденсаторов осуществляется менее крупными единицами измерения. Чаще всего используется mF = 1 мкф (микрофарад), что составляет 10-6 фарад.

При расчетах может применяться внемаркировочная единица – миллифарад (1мФ), имеющая значение 10-3 фарад. Кроме того, обозначения могут быть в нанофарадах (нФ) равных 10-9 Ф и пикофарадах (пФ), составляющих 10-12 Ф.

Нанесение маркировки емкости конденсаторов с большими размерами осуществляется прямо на корпус. В некоторых конструкциях маркировка может отличаться, но в целом, необходимо ориентироваться по единицам измерения, которые упоминались выше.

Обозначения иногда наносятся прописными буквами, например, MF, что на самом деле соответствует mF – микрофарадам. Также встречается маркировка fd – сокращенное английское слово farad. Поэтому mmfd будет соответствовать mmf или пикофараду. Кроме того, существуют обозначения, включающие число и одну букву. Такая маркировка выглядит как 400m и применяется для маленьких конденсаторов.

В некоторых случаях возможно нанесение допусков, которые являются допустимым отклонением от номинальной емкости конденсатора. Данная информация имеет большое значение, когда при сборке отдельных видов электрических цепей могут потребоваться конденсаторы с точным значением емкости. Если в качестве примера взять маркировку 6000uF + 50%/-70%, то значение максимальной емкости составит 6000 + (6000 х 0,5) = 9000 мкФ, а минимальной 1800 мкФ = 6000 — (6000 х 0,7).

При отсутствии процентов, необходимо отыскать букву. Обычно она располагается отдельно или после числового обозначения емкости. Каждой букве соответствует определенное значение допуска. После этого можно приступать к определению номинального напряжения.

При больших размеров корпуса конденсатора, маркировка напряжения обозначается числами, за которыми расположены буквы или буквенные сочетания в виде V, VDC, WV или VDCW. Символы WV соответствуют английскому словосочетанию WorkingVoltage, что в переводе означает рабочее напряжение. Цифровые показатели считаются максимально допустимым напряжением конденсатора, измеряемым в вольтах.

При отсутствии на корпусе устройства какого-либо обозначения, указывающего на напряжение, такой конденсатор должен использоваться только в низковольтных цепях. В цепи переменного тока следует использовать устройство, предназначенное именно для этих целей. Нельзя применять конденсаторы, рассчитанные на постоянный ток, без возможности преобразования номинального напряжения.

Следующим этапом будет определение положительных и отрицательных символов, указывающих на наличие полярности. Определение плюса и минуса имеет большое значение, поскольку неправильное определение полюсов может привести к короткому замыканию и даже взрыву конденсатора. При отсутствии специальных обозначений, подключение устройства может быть выполнено к любым клеммам, независимо от полярности.

Обозначение полюсов иногда наносится в виде цветной полосы или кольцеобразного углубления. Такая маркировка соответствует отрицательному контакту в электролитических алюминиевых конденсаторах, своей формой напоминающих консервную банку. В танталовых конденсаторах с очень маленькими размерами эти же обозначения указывают на положительный контакт

При наличии символов плюса и минуса цветовую маркировку можно не принимать во внимание

Маркировка отечественных конденсаторов

Для всех постсоветских предприятий характерна достаточно полная маркировка радиоэлементов, допускающая незначительные отличия в обозначениях.

Ёмкость

Первым и самым важным параметром конденсатора является емкость. В связи с этим значение данной характеристики располагается на первом месте и кодируется буквенно-цифровым обозначением. Так как единицей измерения емкости является фарада, то в буквенном обозначении присутствует либо символ кириллического алфавита «Ф», либо символ латинского алфавита «F».

Так как фарад – большая величина, а используемые в промышленности элементы имеют намного меньшие номиналы, то и единицы измерения имеют разнообразные уменьшительные префиксы (мили-, микро-, нано- и пико). Для их обозначения используют также буквы греческого алфавита.

  • 1 миллифарад равен 10 -3 фарад и обозначается 1мФ или 1mF.
  • 1 микрофарад равен 10 -6 фарад и обозначается 1мкФ или 1F.
  • 1 нанофарад равен 10 -9 фарад и обозначается 1нФ или 1nF.
  • 1 пикофарад равен 10 -12 фарад и обозначается 1пФ или 1pF.

Если значение емкости выражено дробным числом, то буква, обозначающая размерность единиц измерения, ставится на месте запятой. Так, обозначение 4n7 следует читать как 4,7 нанофарад или 4700 пикофарад, а надпись вида n47 соответствует емкости в 0,47 нанофарад или же 470 пикофарад.

В случае, когда на конденсаторе не обозначен номинал, то целое значение говорит о том, что емкость указана в пикофарадах, например, 1000, а значение, выраженное десятичной дробью, указывает на номинал в микрофарадах, например 0,01.

Расшифровка маркировки на керамическом конденсаторе. маркировка радиокомпонентов в цвете. Как работают электронные схемы?

Ёмкость конденсатора, указанная на корпусе, редко соответствует фактическому параметру и отклоняется от номинального значения в пределах некоторого диапазона. Точное значение емкости, к которой стремятся при изготовлении конденсаторов, зависит от материалов, используемых для их производства. Разброс параметров может лежать в пределах от тысячных долей до десятков процентов.

Величина допустимого отклонения ёмкости указывается на корпусе конденсатора после номинального значения путем проставления буквы латинского или русского алфавита. К примеру, латинская буква J (русская буква И в старом обозначении) обозначает диапазон отклонения 5% в ту или иную стороны, а буква М (русская В) – 20%.

Расшифровка маркировки на керамическом конденсаторе. маркировка радиокомпонентов в цвете. Как работают электронные схемы?

Такой параметр, как температурный коэффициент емкости, входит в состав маркировки достаточно редко и наносится в основном на малогабаритные элементы, применяемые в электрических схемах времязадающих цепей. Для идентификации используется либо буквенно-цифровая, либо цветовая система обозначений.

Встречается и комбинированная буквенно-цветовая маркировка. Варианты её настолько разнообразны, что для безошибочного определения значения данного параметра для каждого конкретного типа конденсатора требуется обращение к ГОСТам или справочникам по соответствующим радиокомпонентам.

Номинальное напряжение

Напряжение, при котором конденсатор будет работать в течение установленного срока службы с сохранением своих характеристик, называется номинальным напряжением. Для конденсаторов, имеющих достаточные размеры, данный параметр наносится непосредственно на корпус элемента, где цифры указывают на номинальное значение напряжения, а буквы обозначают в каких единицах измерения оно выражено.

Расшифровка маркировки на керамическом конденсаторе. маркировка радиокомпонентов в цвете. Как работают электронные схемы?

Например, обозначение 160В или 160V показывает, что номинальное напряжение равно 160 вольт. Более высокие напряжения указываются в киловольтах – kV. На малогабаритных конденсаторах величину номинального напряжения кодируют одной из букв латинского алфавита. К примеру, буква I соответствует номинальному напряжению в 1 вольт, а буква Q – 160 вольт.

Расшифровка маркировки на керамическом конденсаторе. маркировка радиокомпонентов в цвете. Как работают электронные схемы?

Дата выпуска

Согласно “ГОСТ 30668-2000 Изделия электронной техники. Маркировка”, указываются буквы и цифры, обозначающие год и месяц выпуска.

4 При обозначении года и месяца сначала указывают год изготовления (две последние цифры года), затем месяц — двумя цифрами. Если месяц обозначен одной цифрой, то перед ней ставят нуль. Например: 9509 (1995 год, сентябрь).

5 Для изделий, габаритные размеры которых не позволяют обозначать год и месяц изготовления в соответствии с 4. 4, следует использовать коды, приведенные в таблицах 1 и 2. Коды маркировки, приведенные в таблице 1, повторяются каждые 20 лет

Дата, когда было осуществлено то или иное производство, может отображаться не только в виде цифр, но и в виде букв. Каждый год имеет соотношение с буквой из латинского алфавита. Месяца с января по сентябрь обозначаются цифрами от одного до девяти. Октябрь месяц имеет соотношение с цифрой ноль. Ноябрю соответствует буква латинского типа N, а декабрю – D.

Кодовая маркировка, дополнение

В соответствии со стандартами IEC на практике применяется четыре способа кодировки номинальной емкости.

Маркировка 3 цифрами

Первые две цифры указывают на значение емкости в пигофарадах (пф), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1. 0 пФ первая цифра «0».

Буква R используется в качестве десятичной запятой. Например, код 010 равен 1. 0 пФ, код 0R5 — 0. 5 пф.

* Иногда последний ноль не указывают.

Маркировка 4 цифрами

Возможны варианты кодирования 4-значным числом. Но и в этом случае последняя цифра указывает количество нулей, а первые три — емкость в пикофарадах.

Расшифровка маркировки на керамическом конденсаторе. маркировка радиокомпонентов в цвете. Как работают электронные схемы?

Маркировка емкости в микрофарадах

Вместо десятичной точки может ставиться буква R.

Смешанная буквенно-цифровая маркировка емкости, допуска, ТКЕ, рабочего напряжения

В отличие от первых трех параметров, которые маркируются в соответствии со стандартами, рабочее напряжение у разных фирм имеет различную буквенно-цифровую маркировку.

КодЕмкость

p100,1 пФ
Ip51,5 пФ
332p332 пФ
1НО или 1nО1,0 нФ
15Н или 15n15 нФ
33H2 или 33n233,2 нФ
590H или 590n590 нФ
m150,15мкФ
1m51,5 мкФ
33m233,2 мкФ
330m330 мкФ
1mO1 мФ или 1000 мкФ
10m10 мФ

Маркировка конденсаторов тремя цифрами

При такой маркировке две первые цифры определяют мантиссу емкости, а последняя — показатель степени по основанию 10, другими словами в какую степень нам нужно возвести число 10, или еще проще сколько нулей нужно добавить после первых 2-х чисел.

Полученное таким образом число соответствует емкости в пикофарадах. Если первая цифра «0», то емкость менее 1пФ (010 = 1. 0пФ). Если последняя цифра равна «9» то это означает что показатель степени равен «-1» что мы должны мантиссу умножить на 10 в степени «-1» или другими словами разделить ее на 10.

кодпикофарады, пФ, pFнанофарады, нФ, nFмикрофарады, мкФ, μF

1091. 0 пФ
1591. 5 пФ
2292. 2 пФ
3393. 3 пФ
4794. 7 пФ
6896. 8 пФ
10010 пФ0. 01 нФ
15015 пФ0. 015 нФ
22022 пФ0. 022 нФ
33033 пФ0. 033 нФ
47047 пФ0. 047 нФ
68068 пФ0. 068 нФ
101100 пФ0. 1 нФ
151150 пФ0. 15 нФ
221220 пФ0. 22 нФ
331330 пФ0. 33 нФ
471470 пФ0. 47 нФ
681680 пФ0. 68 нФ
1021000 пФ1 нФ
1521500 пФ1. 5 нФ
2222200 пФ2. 2 нФ
3323300 пФ3. 3 нФ
4724700 пФ4. 7 нФ
6826800 пФ6. 8 нФ
10310000 пФ10 нФ0. 01 мкФ
153 15000 пФ15 нФ0. 015 мкФ
223 22000 пФ22 нФ0. 022 мкФ
333 33000 пФ33 нФ0. 033 мкФ
473 47000 пФ47 нФ0. 047 мкФ
683 68000 пФ68 нФ0. 068 мкФ
104100000 пФ100 нФ0. 1 мкФ
154150000 пФ150 нФ0. 15 мкФ
224220000 пФ220 нФ0. 22 мкФ
334330000 пФ330 нФ0. 33 мкФ
474470000 пФ470 нФ0. 47 мкФ
684680000 пФ680 нФ0. 68 мкФ
1051000000 пФ1000 нФ1 мкФ

Виды SMD-конденсаторов

Различные наименования SMD-конденсаторов по своему функциональному назначению делятся на три класса:

  • Керамические или плёночные неполярные изделия с номиналами от 10 пикофарад до 10 микрофарад, которые обычно не маркируются;
  • Электролитические конденсаторы, имеющие форму алюминиевого бочонка, предназначенного для поверхностного монтажа;
  • Танталовые конденсаторные детали, имеющие прямоугольный корпус различного размера. Выпускаются с цветовой (черной, желтой или оранжевой) маркировкой, дополненной специальным кодом.

Все перечисленные изделия должны иметь обозначение, выполненное в виде соответствующей стандарту маркировки. Но нередко она по той или иной причине отсутствует (стирается, смывается или не была нанесена при кустарном производстве). В этом случае необходимо предпринять какие-то шаги по их полной идентификации.

Условные обозначения конденсаторов

В России существует система условных графических обозначений, включающая УГО конденсатора. Визуальной репрезентации этих устройств, а также резисторов посвящен отдельный ГОСТ, входящий в Единую систему конструкторской документации. Используются также международные стандарты – IEEE.

Конденсатор с постоянной емкостью

Такие элементы выпускаются с поляризацией и без нее. Неполяризованные изделия мелкого размера имеют широкую сферу применения, их можно подсоединять в разных направлениях. На схеме их обозначают двумя параллельными короткими черточками, находящимися под прямым углом к линиям соединения. На корпусе устройства указывают его емкость, нередко без единиц измерения (0,1 – это 1 микрофарад).

Расшифровка маркировки на керамическом конденсаторе. маркировка радиокомпонентов в цвете. Как работают электронные схемы?

Код номера конденсатора

Первая пара знаков показывает емкость, цифра следом за ними – количество нулей. Единица измерения – пикофарад. Иногда на такой маркировке присутствуют буквы, они обозначают допуск в процентах и номинальное напряжение.

Поляризованные конденсаторы

Самым распространенным типом полярного конденсаторного элемента является электролитический. Такие изделия выпускаются в форме цилиндров или в осевом исполнении. Первый вариант несколько компактнее и дешевле. Выводы у него находятся с одной из сторон, тогда как у осевых вариантов – на разных. Поскольку устройства относительно крупные, на их корпусах указываются номинальное напряжение (оно у них относительно низкое) и емкость.

Важно! При подключении этих изделий необходимо строго соблюдать полярность, иначе они могут выйти из строя или даже взорваться. Так в схемах показывают поляризованные элементы

Расшифровка маркировки на керамическом конденсаторе. маркировка радиокомпонентов в цвете. Как работают электронные схемы?

Танталовые конденсаторы

Эти изделия крайне компактны, ставят их в тех случаях, когда важно минимизировать габариты. В прошлом их маркировали двумя цветными полосами (каждый цвет соответствовал цифре) и пятнышком белого или серого цвета (в первом случае значение полос в микрофарадах делили на 10, во втором – на 100). Если повернуть предмет пятном на себя, на правой стороне будет находиться полюс «плюс»

Возле выводов также рисовалась полоса, указывающая напряжение. Современные модели маркируются цифровыми значениями параметров

Если повернуть предмет пятном на себя, на правой стороне будет находиться полюс «плюс». Возле выводов также рисовалась полоса, указывающая напряжение. Современные модели маркируются цифровыми значениями параметров.

Переменные конденсаторы

Из-за очень малой емкости эти детали имеют узкую сферу применения – в основном они используются в радиосхемах. Графически переменные элементы изображаются традиционным символом из пары коротких параллелей, зачеркнутых наклонной стрелой. Емкость указывают не четкой цифрой, а диапазоном.

Расшифровка маркировки на керамическом конденсаторе. маркировка радиокомпонентов в цвете. Как работают электронные схемы?

Конденсаторы-триммеры

Это суперминиатюрные изделия, монтируемые прямо на печатную плату. Поскольку показатель емкости меняется только при настроечных работах, такие элементы получили название подстроечных. Графическое представление отличается от стандартного для переменных конденсаторов только тем, что вместо острия стрела снабжена перпендикулярной черточкой.

Это изделие с двухслойным строением и довольно большой емкостью (до 10 Ф). На границе электродной поверхности и электролита у таких устройств возникает пространство статичных носителей заряда. В отличие от электролитических вариаций, способ хранения энергии здесь – электростатическое поле. Сочетание большой площади поверхности и малой толщины пространства обеспечивает столь высокий показатель емкости. Обозначается как символ конденсаторного элемента с перпендикулярной ему вертикальной линией, помещенный в круг. При этом в верхней правой и нижней левой четвертях, на которые символ и вертикаль делят круг, находятся линии, сходные с графиком полусинусоиды.

Виды и маркировка

Конденсаторы классифицируются по группам, в зависимости от вида диэлектрика, применяемого между обкладками, а также по предназначению.

Классификация по диэлектрику:

  • вакуумные;
  • газовые;
  • электролитические и оксидно-полупроводниковые;
  • керамические.

По назначению устройства делятся:

  • с постоянной емкостью для построения различных цепей или в качестве фильтра;
  • с переменной для изменения емкости, например, в колебательном контуре радиоприемника или другой частотной аппаратуры;
  • подстроечные для коррекции емкости основного конденсатора при сборке и калибровке оборудования и приборов.

Расшифровка маркировки на керамическом конденсаторе. маркировка радиокомпонентов в цвете. Как работают электронные схемы?

На корпусе вид обычно не указывается, так как для этого просто не хватает места. В устаревших моделях это отображалось в буквенной маркировке. Первая буква «К» означала конденсатор, а вторая − материал диэлектрика. Например, КК – конденсатор керамический.

С развитием технологий такой способ утратил способность отображать весь ряд моделей, поэтому была разработана новая система цифровой маркировки, в которой цифра означала группу принадлежности. Для расшифровки группы пользовались таблицами, которые также уже устарели.

В маркировке современных моделей отображается только емкость, допуски по отклонению и максимально допустимое напряжение, а иногда − производитель или торговая марка. Вид указывается в сопроводительной документации и на упаковке. При этом смысл цифровой классификации по группам был утерян.

Различить какой конденсатор можно еще по его внешнему виду. Электролитические имеют цилиндрическую форму, в них обкладки и диэлектрическая прослойка выполнена в виде ленты и смотана в рулон, поэтому и форма соответствующая.

Керамические имеют плоскую форму в виде таблетки или параллелепипеда. Модели с переменной емкостью оснащаются поворотной ручкой или имеют управляющий контакт – третью ножку. В подстрочных предусматривается шлиц для регулировки отверткой.

Физические величины, используемые в маркировке емкости керамических конденсаторов

Для определения величины емкости в международной системе единиц (СИ) используется Фарад (Ф, F). Для стандартной электрической схемы это слишком большая величина, поэтому в маркировке бытовых конденсаторов используются более мелкие единицы.

Таблица единиц емкости, применяемых для бытовых керамических конденсаторов Наименование единицы

Варианты обозначенийСтепень по отношению к ФарадуМикрофарадMicrofaradмкФ, µF, uF, mF10-6FНанофарадNanofaradнФ, nF10-9FПикофарадPicofaradпФ, pF, mmF, uuF10-12F

Редко применяется внемаркировочная единица миллифарад – 1 мФ (10-3Ф).

Как обозначаются танталовые конденсаторы?

Главное отличие от остальных видов устройств – использование знака µ для ёмкости. Латинскую букву v добавляют после соответствующего числа, чтобы быстро понять, какое напряжение у прибора. Имеются также дополнительные коды, используемые для следующих параметров:

  • Завод-изготовитель.
  • Дата выпуска.
  • Вариант исполнения.

Маркировка Изучение инструкции и описания на официальном сайте производителя поможет получить дополнительную информацию, связанную с той или иной конкретной моделью конденсатора. Особенно тщательно следует изучить пошаговое руководство по монтажу изделия. Например, при установке на печатную плату, в большинстве случаев пользуются обычной ручной пайкой, либо инфракрасным нагревом со специальной камерой.

Важно! Чтобы предотвратить разрушения оксидного слоя и возникновение прочих дефектов, рекомендуется придерживаться допустимого температурного диапазона, указанного производителем

Пробои танталовых конденсаторов

При использовании этих эффективных, но немного капризных устройств, необходимо контролировать появление состояния отказа, поскольку известны случаи их возгорания при отказе. Отказы связаны с тем, что при неправильной эксплуатации пентаоксид тантала меняет аморфную структуру на кристаллическую, то есть из диэлектрика он превращается в проводник. Смена структур может наступить из-за слишком высокого пускового тока. Пробой диэлектрика вызывает повышение токов утечки, которые в свою очередь приводят к пробою самого конденсатора.

Причиной неприятностей, связанных с эксплуатацией танталовых конденсаторов, может быть диоксид марганца. Кислород, который присутствует в этом соединении, вызывает появление локальных очагов возгорания. Пробои с возгоранием характерны для старых моделей. Новые технологии позволяют получать более надежную продукцию.

Пробои, которые произошли при высоких температурах и напряжении, могут вызывать эффект лавины. В этом случае повреждения часто распространяются на большую часть или всю площадь устройства. Если же площадь кристаллизованного пентаоксида тантала небольшая, то часто происходит эффект самовосстановления. Он возможен, благодаря преобразованиям, происходящим в электролите в случае пробоя диэлектрика. В результате всех превращений кристаллизованный участок-проводник оказывается окруженным оксидом марганца, который полностью нейтрализует его проводимость.

Маркировка электролитических SMD конденсаторов

Расшифровка маркировки на керамическом конденсаторе. маркировка радиокомпонентов в цвете. Как работают электронные схемы?

Электролитические SMD конденсаторы маркикуются 2 основными способами:

Способ, емкостью в микрофарадах и рабочим напряжением ,например:

10 6. 3V = 10 мкФ на 6,3В.

Способ, при помощи буквы и три цифры

Буква и три цифры, при этом буква указывает на рабочее напряжение в соответствии с приведенной ниже таблицей, первые две цифры определяют мантиссу, последняя цифра — показатель степени по основанию 10, для
получения емкости в пикофарадах. Полоска на таких конденсаторах указывает положительный вывод.

по таблице «A» — напряжение 10В, 105 — это 10*105 пФ = 1 мкФ, т. это
конденсатор 1 мкФ на 10В

букваeGJACDEVH (T для танталовых)

напряжение2,5 В4 В6,3 В10 В16 В20 В25 В35 В50 В

Как расшифровать маркировку конденсатора и узнать его ёмкость?

Основные сведения о характеристиках конденсаторов, являющихся составными частями практически всех электронных схем, принято размещать на их корпусах. В зависимости от типоразмера элемента, производителя, времени производства данные, наносимые на электронный прибор, постоянно изменяются не только по составу, но и по внешнему виду.

Расшифровка маркировки на керамическом конденсаторе. маркировка радиокомпонентов в цвете. Как работают электронные схемы?

С уменьшением размера корпуса состав буквенно-цифровых обозначений изменялся, кодировался, заменялся цветовой маркировкой. Разнообразие внутренних стандартов, используемых производителями радиоэлектронных элементов, требует определенных знаний для правильного интерпретирования информации нанесенной на электронный прибор.

Цифро-буквенное обозначение

Если вы разбираете старую советскую аппаратуру, то там все будет довольно просто, – на корпусах так и написано «22пФ», что значит 22 пикофарад, или «1000 мкФ», что значит 1000 микрофарад. Старые советские конденсаторы обычно были достаточного размера чтобы на них можно было писать такие «длинные тексты».

Общемировая, если можно так сказать, цифро-буквенная маркировка предполагает использование букв латинского алфавита:

  • p – пикофарады,
  • n – нанофарады
  • m – микрофарады.

Расшифровка маркировки на керамическом конденсаторе. маркировка радиокомпонентов в цвете. Как работают электронные схемы?

При этом полезно помнить, что если за единицу емкости условно принять пикофарад (хотя, это и не совсем правильно), то буквой «p» будут обозначаться единицы, буквой «n» – тысячи, буквой «m» – миллионы. При этом, букву будут использовать как децимальную точку. Вот наглядный пример, конденсатор емкостью 2200 пФ, по такой системе будет обозначен 2n2, что буквально значит «2,2 нанофарад». Или конденсатор емкостью 0,47 мкФ будет обозначен m47, то есть «0,47 микрофарад».

Будет интересно Конденсатор — простыми словами о сложном

Причем у конденсаторов отечественного производства встречается аналогичная маркировка в кириллице, то есть, пикофарады обозначают буквой «П», нанофарады – буквой «Н», микрофарады -буквой «М». А принцип тот же: 2Н2 – это 2,2 нанофарад, М47 – это 0,47 микрофарад. У некоторых типов миниатюрных конденсаторов «мкФ» обозначается буквой R, которая тоже используется как децимальная точка, например:

1R5 =1,5 мкФ.

Цветовая кодировка керамических конденсаторов.

На корпусе конденсатора, слева — направо, или сверху — вниз наносятся цветные полоски.

Как правило, номинал емкости оказывается закодирован первыми тремя полосками. Каждому цвету, в первых двух полосках,соответствует своя цифра: черный — цифра 0; коричневый — 1; красный — 2; оранжевый — 3; желтый — 4; зеленый — 5; голубой — 6; фиолетовый — 7; серый — 8; белый — 9. Таким образом, если например, первая полоска коричневая а вторая желтая, то это соответствует числу -14. Но это число не будет величиной номинальной емкости конденсатора, его еще необходимо умножить на множитель, закодированный третьей полоской.

В третьей полоске цвета имеют следующие значение: оранжевый — 1000; желтый — 10000; зеленый — 100000. Допустим, что цвет третьей полоски нашего конденсатора — желтый. Умножаем 14 на 10000, получаем емкость в пикофарадах -140000, иначе, 140 нанофарад или 0,14 микрофарад. Четвертая полоска обозначает допустимые отклонения от номинала емкости(точность), в процентах: белый — ± 10 %; черный — ± 20%. Пятая полоска — номинальное рабочее напряжение. Красный цвет — 250 Вольт, желтый — 400.

Типы постоянных конденсаторов

Существует большое количество моделей двухполюсников постоянной ёмкости. Рассмотрим наиболее популярные из них:

  • КМ — керамические советские конденсаторы с большим содержанием драгметаллов, применялись в промышленном и военном оборудовании;
  • КСО — двухполюсник со слюдяным диэлектриком, благодаря которому устройство работало на высоких частотах;
  • КТК — керамические трубчатые конденсаторы, чаще всего использовались для высокочастотной техники;
  • МБМ — металлобумажный конденсатор, важный элемент старых усилителей и ламповых устройств.

Советские конденсаторы КМ высоко ценятся среди скупщиков старой радиоаппаратуры. Некоторые модели содержат значительное количество дорогостоящих металлов — серебра, платины, палладия. Стоимость килограмма конденсаторов может достигать 80 000 рублей!

Цифровая маркировка ставится на корпусах малого размера. Обычно используется три или четыре цифры, но можно встретить и пять, на специализированных деталях. Три и четыре включают в себя номинал и множитель.

Три цифры

Три цифры в маркировке конденсаторов — это ёмкость и множитель. Первые две — это номинал, а последняя — степень в которую надо возвести. Например, маркировка цифры 225 обозначает — 22 ёмкость, третья цифра 5, это множитель. Итого 22*105 — в микрофарадах результат 2,2 мкФ.

Множитель 9 используется при обозначении ёмкости менее 10 пФ. Например, 209, ёмкость составит 2 пФ.

Рассмотрим ещё один пример маркировки конденсаторов из трёх цифр — 104. И снова, ёмкость 10, степень — 4. Это значит, что номинал этого конденсатора 10*104, что составляет 100000 пФ или 100 нФ или 0,1 мкФ.

МаркировкаЕмкость в микрофарадах (мкФ)Емкость в нанофарадах (нФ)Емкость в пикофарадах (пФ)1090,0000010,0011,01590,00000150,00151,52290,00000220,00222,23390,00000330,00333,34790,00000470,00474,76890,00000680,00686,81000,000010,01101500,0000150,015152200,0000220,022223300,0000330,033334700,0000470,047476800,0000680,068681010,00010,11001510,000150,151502210,000220,222203310,000330,333304710,000470,474706810,000680,686801020,001110001520,00151,515002220,00222,222003320,00333,333004720,00474,747006820,00686,868001030,0110100001530,01515150002230,02222220003330,03333330004730,04747470006830,06868680001040,11001000001540,151501500002240,222202200003340,333303300004740,474704700006840,686806800001051,010001000000

Виды SMD конденсаторов

Разбираться в видах конденсаторов, монтирующихся методом поверхностного закрепления, необходимо каждому радиолюбителю. Такие изделия могут отличаться не только по емкости, но и по напряжению, поэтому игнорирование условий использования деталей может привести к тому, что они выйдут из строя.

Вам это будет интересно Особенности источников тока

Электролитические компоненты

Электролитические SMD конденсаторы не отличаются принципиально от стандартных изделий. Такие электронные компоненты наиболее часто представляют собой бочонки, в которых под алюминиевым корпусом располагается скрученный в цилиндр тонкий металл, а между ним твердый или жидкий электролит.

Основное отличие такой детали от стандартного электролитического элемента заключается в том, что его контакты закреплены на плоской диэлектрической подложке. Такие изделия очень надежны в эксплуатации, особенно удобны в том случае, когда необходимо установить новое изделие при минимальных временных затратах

Кроме этого, во время пайки изделие не перегревается, что очень важно для электролитических конденсаторов

Керамические компоненты

В керамических элементах в качестве диэлектрика применяется фарфор либо аналогичные неорганические материалы. Основное достоинство таких изделий заключается в устойчивости к высоким температурам и возможности производства изделий крайне малых размеров.

Важно! SMD конденсаторы керамического типа также устанавливаются методом пайки на печатную плату. Визуально такой элемент, как правило, напоминает небольшой кирпичик, к которому с торцов припаиваются контактные площадки

Визуально такой элемент, как правило, напоминает небольшой кирпичик, к которому с торцов припаиваются контактные площадки.

Керамические SMD конденсаторы

В отличие от радиодеталей стандартных размеров SMD элементы небольшого размера вначале приклеивают к плате, а уже потом припаивают выводы. На производстве керамические изделия этого типа устанавливаются специальными автоматами.

Маркировка танталовых SMD конденсаторов

Танталовые SMD конденсаторы устойчивы к повышенным механическим нагрузкам. Такие изделия также могут быть изготовлены в виде небольшого параллелепипеда, к которому с боковых сторон припаиваются контактные выводы. Тантал представляет собой очень прочный металл, обладающий высокими показателями пластичности. Фольга из этого материала может иметь толщину в сотые доли миллиметра.

К сведению! Благодаря наличию определенных физических свойств на основе тантала удается изготовить радиодетали высочайшей точности.

Расшифровка маркировки на керамическом конденсаторе. маркировка радиокомпонентов в цвете. Как работают электронные схемы?

Танталовые конденсаторы, как правило, имеют небольшие размеры корпуса, поэтому нанести полную маркировку на изделия, выполненные в корпусе типоразмера «А», не всегда представляется возможным. Зная особенности обозначения радиодеталей этого типа, можно легко определить номинал изделия. Максимально допустимое напряжение в вольтах для танталовых изделий обозначается латинскими буквами:

  • C — 16;
  • D — 20;
  • E — 25;

Обратите внимание! Емкость изделий указывается в микрофарадах после буквы «μ», а положительный контакт — жирной линией

Маркировка конденсаторов импортного производства

На сегодняшний день стандарты, которые были приняты от IEC, относятся не только к иностранным видам оборудования, а и к отечественным. Данная система предполагает нанесение на корпус продукции маркировки кодового типа, которая состоит из трех непосредственных цифр.

Две цифры, которые расположены с самого начала, обозначают емкость предмета и в таких единицах, как пикофарадах. Цифра, которая расположена третьей по порядку – это число нулей. Рассмотрим это на примере 555 – это 5500000 пикофарад. В том случае, если емкость изделия является меньше, чем один пикофарад, то с самого начала обозначается цифра ноль.

Расшифровка маркировки на керамическом конденсаторе. маркировка радиокомпонентов в цвете. Как работают электронные схемы?

Есть также и трехзначный вид кодировки. Такой тип нанесения применяется исключительно к деталям, которые являются высокоточными.

Цветовая маркировка импортных конденсаторов

Обозначение наименований на таком предмете, как конденсатор, имеет такой же принцип производства, что и на резисторах. Первые полосы на двух рядах обозначают емкость данного устройства в тех же измерительных единицах. Третья полоса имеет обозначение о количестве непосредственных нулей. Но при этом полностью отсутствуют синий окрас, вместо него применяют голубой.

Важно знать, что если цвета идут одинаковые подряд, то между ними целесообразно осуществить промежутки, чтобы было четко понятно. Ведь в другом случае эти полосы будут сливаться в одну

Расшифровка маркировки на керамическом конденсаторе. маркировка радиокомпонентов в цвете. Как работают электронные схемы?

Зачем нужна маркировка?

Цель маркировки электронных компонентов – возможность их точной идентификации. Маркировка конденсаторов включает в себя:

  • данные о ёмкости конденсатора – главной характеристике элемента;
  • сведения о номинальном напряжении, при котором прибор сохраняет свою работоспособность;
  • данные о температурном коэффициенте емкости, характеризующем процесс изменения емкости конденсатора в зависимости от изменения температуры окружающей среды;
  • процент допустимого отклонения емкости от номинального значения, указанного на корпусе прибора;
  • дату выпуска.

Для конденсаторов, при подключении которых требуется соблюдать полярность, в обязательном порядке указывается информация, позволяющая правильно ориентировать элемент в электронной схеме.

Расшифровка маркировки на керамическом конденсаторе. маркировка радиокомпонентов в цвете. Как работают электронные схемы?

Система маркировки конденсаторов, выпускавшихся на предприятиях, входивших в состав СССР, имела принципиальные отличия от системы маркировки, применяемой на тот момент иностранными компаниями.

Расшифровка маркировки на керамическом конденсаторе. маркировка радиокомпонентов в цвете. Как работают электронные схемы?

Расшифровка маркировки на керамическом конденсаторе. маркировка радиокомпонентов в цвете. Как работают электронные схемы?

Расшифровка маркировки на керамическом конденсаторе. маркировка радиокомпонентов в цвете. Как работают электронные схемы?

Расшифровка маркировки на керамическом конденсаторе. маркировка радиокомпонентов в цвете. Как работают электронные схемы?

Расшифровка маркировки на керамическом конденсаторе. маркировка радиокомпонентов в цвете. Как работают электронные схемы?

Конденсаторы постоянной емкости

Конденсаторы постоянной емкости применяют в различных схемах для разделения переменной и постоянной составляющих тока и сглаживания пульсации напряжений выпрямителя. В сочетании с другими элементами схем конденсаторы образуют резонансные контуры, широко используемые в радиоаппаратуре. Конденсаторы постоянной емкости классифицируют по величине номинальной емкости, классу точности, номинальному рабочему напряжению, назначению, материалу диэлектрика и по конструктивным признакам.

Номинальные величины емкостей конденсаторов установлены ГОСТ 2519 — 60. При изготовлении конденсаторов действительное значение емкости отличается от номинального, обозначенного в маркировке. Допустимое отклонение емкости от номинального называется допуском. По этому принципу все конденсаторы разделяют на пять классов: 0, 1, II, III, IV, допуски их соответственно составляют ±2%; ±5%; ±10%; ±20% и от — 20 до + 50%.

В зависимости от назначения различают контурные, разделительные, блокировочные и фильтровые конденсаторы. По материалу диэлектрика конденсаторы делят на слюдяные, керамические, бумажные, металлобумажные, бумаго-масляные, пленочные, стеклоэмалевые, стеклокерамические, электролитические, воздушные, вакуумные, газонаполненные. По конструктивному признаку конденсаторы подразделяют на трубчатые, дисковые, бочоночные, горшковые, опрессованные и герметизированные, плоские и цилиндрические и т.

Независимо от вида конденсатор характеризуется рабочим напряжением. Рабочим напряжением называется напряжение, под которым обкладки конденсатора могут длительно находиться без пробоя разделяющего их диэлектрика. Рабочее напряжение выражают в вольтах. Большое значение для нормальной работы конденсатора имеет сопротивление его изоляции. При малом сопротивлении изоляции возникают утечки, нарушающие нормальную работу схемы. Потери в конденсаторе характеризуются тангенсом угла диэлектрических потерь, выражающим отношение мощности активных потерь к реактивной мощности конденсатора.

В маломощных конденсаторах потери энергии в основном вызываются проводимостью диэлектрика и диэлектрическим гистерезисом, т. потерями на поворот полярных молекул в направлении поля при приложении напряжения к обкладкам. Потери в обкладках и выводах малы, поэтому ими обычно пренебрегают. Одной из важнейших характеристик конденсатора является стабильность — неизменность величины емкости конденсатора во время работы. Изменение емкости может быть как временным, так и необратимым. Основным фактором, влияющим на стабильность емкости конденсатора, является воздействие температуры окружающей среды и нагрев конденсатора за счет рассеиваемой на нем мощности. При повышении температуры увеличиваются геометрические размеры материала, что и влечет за собой временное (до возвращения температуры к первоначальному значению) изменение емкости.

Оцените статью
Маркировка-Про